留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热电复合材料的研究进展

邱玉婷 鲁翰宸 金阳 王思宁 赵立东

邱玉婷, 鲁翰宸, 金阳, 等. 热电复合材料的研究进展[J]. 复合材料学报, 2022, 39(9): 4213-4226. doi: 10.13801/j.cnki.fhclxb.20220526.003
引用本文: 邱玉婷, 鲁翰宸, 金阳, 等. 热电复合材料的研究进展[J]. 复合材料学报, 2022, 39(9): 4213-4226. doi: 10.13801/j.cnki.fhclxb.20220526.003
QIU Yuting, LU Hanchen, JIN Yang, et al. Research progress in thermoelectric composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4213-4226. doi: 10.13801/j.cnki.fhclxb.20220526.003
Citation: QIU Yuting, LU Hanchen, JIN Yang, et al. Research progress in thermoelectric composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4213-4226. doi: 10.13801/j.cnki.fhclxb.20220526.003

热电复合材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20220526.003
基金项目: 国家自然科学基金(52002011;51772012);国家重点研发计划(2021 YFB3201100;2018 YFA0702100;2018 YFB0703600);国家杰出青年科学基金(51925101);北京市自然科学基金(JQ18004);高性能陶瓷与超微结构国家重点实验室2020年度开放基金课题(SKL202005 SIC);111项目(B17002);深圳市孔雀计划团队(KQTD2016022619565991)
详细信息
    通讯作者:

    赵立东,博士,教授,博士生导师,研究方向为热电材料 E-mail: zhaolidong@buaa.edu.cn

  • 中图分类号: TN37

Research progress in thermoelectric composites

Funds: National Natural Science Foundation of China (52002011 and 51772012), National Key Research and Development Program of China (2021 YFB3201100, 2018 YFA0702100 and 2018 YFB0703600), National Science Fund for Distinguished Young Scholars (51925101), the Beijing Natural Science Foundation (JQ18004), the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (SKL202005 SIC), 111 Project (B17002), and Shenzhen Peacock Plan team (KQTD2016022619565991)
  • 摘要: 热电材料利用固体内部载流子运动特性可实现热能和电能的相互转换,该过程无噪音、无污染,因而热电材料具有广泛而重要的应用前景。热电转换效率依赖于材料本身,不断改善现有热电材料的性能和开发新型高性能的热电材料体系是热电材料领域的重要研究方向。通过复合策略,第二相的种类、含量及微结构调控是设计高性能热电复合材料的关键,如引入第二相所实现的声子散射效应可降低材料的晶格热导率,通过载流子选择性散射的能量过滤效应可提升材料的Seebeck系数,高导电第二相连网引起的渗流效应可提高材料的电导率。本文先介绍复合材料中常见的物理效应,再以几个典型热电材料体系为例介绍复合化实现的微结构调控对电、声输运性能的影响机制。

     

  • 图  1  在2-2型多层复合材料中的并联情况 (a) 和串联情况 (b)[5]

    Figure  1.  Parallel (a) and series (b) in type 2-2 multilayer composites[5]

    图  2  四种不同维度材料电子能态密度随电子能量变化示意图[18]

    Figure  2.  Scheme of density of electron energy states as a function of electron energy in four different dimensional materials[18]

    图  3  能量过滤示意图[28]

    Figure  3.  Schematic diagram of energy filtration[28]

    图  4  能带对齐示意图[32]

    Figure  4.  Schematic diagram of band alignment[32]

    CB—Conduction band; VB—Valence band

    图  5  能带尖锐化示意图[34]

    Figure  5.  Schematic diagram of band sharpening[34]

    图  6  高分子复合热电材料中的电导率 (a) 与导电相体积分数渗流效应 (b)[39]

    Figure  6.  Conductivity varies (a) with volume fraction of conductive phase percolation effect (b) in polymer based composite thermoelectric materials[39]

    Vc—Percolation threshold

    图  7  Na掺杂的PbTe-SrTe体系中短程、中程、长程声子散射示意图[30]

    Figure  7.  Schematic diagram of short-range, medium-range and long-range phonon scattering in Na-doped PbTe-SrTe[30]

    图  8  Cu在实现n型 PbTe-Cu2Te高热电性能中的协同作用:(a) Cu补偿本征空位提高载流子迁移率与形成间隙原子和纳米结构降低晶格热导率的示意图;载流子迁移率 (b) 与晶格热导率 (c) 随温度的变化关系[63]

    Figure  8.  Synergistic effect of Cu in n-type PbTe-Cu2Te: (a) Schematic diagram of Cu compensating intrinsic vacancies to improve carrier mobility and Cu forming interstitial atoms and nanostructures to reduce lattice thermal conductivity; Carrier mobility (b) and lattice thermal conductivity (c) as a function of temperature[63]

    κl—lattice thermal conductivity; Kmin—Theoretical minimum of lattice thermal conductivity; VPb—Vacancy in Pb site

    图  9  (a) 引入SnSe2形成更多Sn空位(VSn)和SnSe2微区团簇物示意图;(b) 热电优值(ZT)随温度的变化关系[78]

    Figure  9.  (a) Synergistic effect of introducing SnSe2 to form more vacancies in Sn sites (VSn) and micro-SnSe2 clusters;(b) Thermoelectric figure of merit (ZT) as a function of temperature[78]

    图  10  (a) Sn0.98Na0.02S1-xSex (x = 0、0.09)三个价带随温度变化示意图;(b) 加权迁移率和霍尔迁移率随温度的变化关系;(c) 有效质量md*/me随温度的变化关系[35]

    Figure  10.  (a) Schematic of dynamic evolution of three separate valence bands with increasing temperature for SnS; (b) Relationship between weighted mobility and Hall mobility with temperature; (c) Relationship between effective mass md*/me and temperature [35]

    1, 2, 3—Three valence bands

    图  11  (a) Ge0.9Sb0.1Te-2%CdSe样品的CdSe纳米颗粒的高分辨STEM HAADF图像;该样品在水平方向 (b) 和垂直方向 (c) 的应力分布图;(d) 多个GeTe基复合材料的加权迁移率与晶格热导率的关系图;(e) 多个GeTe基复合材料的平均ZT比较[86]

    Figure  11.  (a) High-magnification STEM HAADF image for CdSe nanoprecipitate; Geometric phase analysis analysis results from along horizontal (b) and vertical (c) direction of CdSe nanoprecipitate; (d) Relation between the weighted mobility and lattice thermal conductivity of multiple GeTe matrix composites; (e) Average of ZT value compared with previous reported datas[86]

    κlat—Lattice thermal conductivity; εxx—Stress in the horizontal direction; εyy—Stress in the vertical direction

  • [1] SHI X, ZOU J, CHEN Z. Advanced thermoelectric design: From materials and structures to devices[J]. Chemical Reviews,2020,120(15):7399-7515. doi: 10.1021/acs.chemrev.0c00026
    [2] 张宗委, 王心宇, 刘一杰, 等. 热电能源材料研究进展[J]. 硅酸盐学报, 2018, 46(2):288-305.

    ZHANG Z W, WANG X Y, LIU Y J, et al. Development on thermoelectric materials[J]. Journal of the Chinese Cera-mic Society,2018,46(2):288-305(in Chinese).
    [3] SHI X, CHEN L, UHER C. Recent advances in high-perfor-mance bulk thermoelectric materials[J]. International Materials Reviews,2016,61(6):379-415. doi: 10.1080/09506608.2016.1183075
    [4] 赵立东, 张德培, 赵勇. 热电能源材料研究进展[J]. 西华大学学报(自然科学版), 2015, 34(1):1-13.

    ZHAO L D, ZHANG D P, ZHAO Y. Recent progress in thermoelectric materials[J]. Journal of Xihua University (Natural Science),2015,34(1):1-13(in Chinese).
    [5] NAN C. Physics of inhomogeneous inorganic materials[J]. Progress in Materials Science,1993,37(1):1-116. doi: 10.1016/0079-6425(93)90004-5
    [6] 陈立东, 熊震, 柏胜强. 纳米复合热电材料研究进展[J]. 无机材料学报, 2010, 25(6):561-568. doi: 10.3724/SP.J.1077.2010.00561

    CHEN L D, XIONG Z, BAI S Q. Recent progress of thermoelectric nanocomposites[J]. Journal of Inorganic Mater-ials,2010,25(6):561-568(in Chinese). doi: 10.3724/SP.J.1077.2010.00561
    [7] LI J, LIU W, ZHAO L, et al. High-performance nanostructured thermoelectric materials[J]. NPG Asia Materials,2010,2(4):152-158. doi: 10.1038/asiamat.2010.138
    [8] BAUGHMAN R H, STAFSTRÖM S, CUI C, et al. Materials with negative compressibilities in one or more dimensions[J]. Science,1998,279(5356):1522-1524. doi: 10.1126/science.279.5356.1522
    [9] BRUGGEMAN D. Calculation of various physics constants in heterogenous substances I dielectricity constants and conductivity of mixed bodies from isotropic substances[J]. Annalen Der Physik,1935,24(7):636-664.
    [10] LANDAUER R. The electrical resistance of binary metallic mixtures[J]. Journal of Applied Physics,1952,23(7):779-784. doi: 10.1063/1.1702301
    [11] MCLACHLAN D S. Evaluating the microstructure of conductor-insulator composites using effective media and percolation theories[J]. Mrs Proceedings, 1995, 411: 278-285.
    [12] NIELSEN L E. The thermal and electrical conductivity of two-phase systems[J]. Industrial& Engineering Che-mistry Fundamentals,1974,13(1):17-20.
    [13] NAKAMURA M. Conductivity for the site-percolation pro-blem by an improved effective-medium theory[J]. Physi-cal Review B,1984,29(6):3691-3693. doi: 10.1103/PhysRevB.29.3691
    [14] HASHIN Z, SHTRIKMAN S. A variational approach to the theory of the effective magnetic permeability of multiphase materials[J]. Journal of Applied Physics,1962,33(10):3125-3131. doi: 10.1063/1.1728579
    [15] 周一鸣, 周玉玲, 庞前涛, 等. Ag掺杂Cu2SnSe3致相反热电性能及其复合提升[J]. 无机材料学报, 2019, 3(34):301-309.

    ZHOU Y M, ZHOU Y L, PANG Q T, et al. Different doping sites of Ag on Cu2SnSe3 and their thermoelectric property[J]. Journal of Inorganic Materials,2019,3(34):301-309(in Chinese).
    [16] HICKS L D, HARMAN T C, SUN X, et al. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit[J]. Physical Review B,1996,53(16):10493-10496. doi: 10.1103/PhysRevB.53.R10493
    [17] OHTA H, KIM S, MUNE Y, et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3[J]. Nature Materials,2007,6(2):129-134. doi: 10.1038/nmat1821
    [18] DRESSELHAUS M S, CHEN G, TANG M Y, et al. New directions for low-dimensional thermoelectric materials[J]. Advanced Materials,2007,19(8):1043-1053. doi: 10.1002/adma.200600527
    [19] 史迅, 席丽丽, 杨炯, 等. 热电材料研究中的基础物理问题[J]. 物理, 2011, 40(11):710-718.

    SHI X, XI L L, YANG J, et al. Basic physics in thermoelectrics[J]. Physics,2011,40(11):710-718(in Chinese).
    [20] MAO J, LIU Z, REN Z. Size effect in thermoelectric mater-ials[J]. Npj Quantum Materials,2016,1:16028. doi: 10.1038/npjquantmats.2016.28
    [21] FITRIANI, OVIK R, LONG B D, et al. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery[J]. Renewable & Sustainable Energy Reviews,2016,64:635-659.
    [22] LEE M, AHN J, SUNG J H, et al. Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity[J]. Nature Communications,2016,7:12011. doi: 10.1038/ncomms12011
    [23] OHTA H, MUNE Y, KOUMOTO K, et al. Critical thickness for giant thermoelectric Seebeck coefficient of 2 DEG confined in SrTiO3/SrTi0.8Nb0.2O3 superlattices[J]. Thin Solid Films,2008,516(17):5916-5920. doi: 10.1016/j.tsf.2007.10.034
    [24] VENKATASUBRAMANIAN R. Lattice thermal conductivity reduction and phonon localization like behavior in superlattice structure[J]. Physical Review B,2000,61(4):3091-3097. doi: 10.1103/PhysRevB.61.3091
    [25] VENKATASUBRAMANIAN R, SIIVOLA E, COLPITTS T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature,2001,413(6856):597-602. doi: 10.1038/35098012
    [26] WU Y, FAN R, YANG P. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires[J]. Nano Letters,2002,2(2):83-86. doi: 10.1021/nl0156888
    [27] ZHANG Y C, BAHK J H, LEE J, et al. Hot carrier filtering in solution processed heterostructures: A paradigm for improving thermoelectric efficiency[J]. Advanced Materials,2014,26(17):2755-2761. doi: 10.1002/adma.201304419
    [28] XIONG Z, CHEN X H, HUANG X Y, et al. High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy[J]. Acta Materialia,2010,58(11):3995-4002. doi: 10.1016/j.actamat.2010.03.025
    [29] ZHAO X, ZHU X, ZHANG R. Evaluation of energy filtering effect from first principles calculations[J]. Physica Status Solidi (a),2016,213(12):3250-3253. doi: 10.1002/pssa.201600546
    [30] BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature,2012,489(7416):414-418. doi: 10.1038/nature11439
    [31] TAN G, SHI F, HAO S, et al. Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe[J]. Nature Communications,2016,7(1):12167. doi: 10.1038/ncomms12167
    [32] ZHAO L, HE J, HAO S, et al. Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS[J]. Journal of the American Chemical Society,2012,134(39):16327-16336. doi: 10.1021/ja306527n
    [33] SATO T, NAKAYAMA K, SOUMA S, et al. Tunability of the k-space location of the Dirac cones in the topological crystalline insulator Pb1−xSnxTe[J]. Physical Review B,2013,87(15):155105. doi: 10.1103/PhysRevB.87.155105
    [34] XIAO Y, WANG D, QIN B, et al. Approaching topological insulating states leads to high thermoelectric performance in n-type PbTe[J]. Journal of the American Chemical Society,2018,140(40):13097-13102. doi: 10.1021/jacs.8b09029
    [35] HE W, WANG D, WU H, et al. High thermoelectric perfor-mance in low-cost SnS0.91Se0.09 crystals[J]. Science,2019,365(6460):1418-1424. doi: 10.1126/science.aax5123
    [36] KIRKPATRICK S. Percolation and conduction[J]. Reviews of Modern Physics,1973,45(4):574-588. doi: 10.1103/RevModPhys.45.574
    [37] SONG D, MA W, ZHANG X. Thermal conductivity in highly loaded metallic nanowire-dielectric composite: Effect of percolation network[J]. Chemical Physics Letters,2019,731(6):136630.
    [38] MENG C, LIU C, FAN S. A promising approach to enhanced thermoelectric properties using carbon nanotube networks[J]. Advanced Materials,2010,22(4):535-539. doi: 10.1002/adma.200902221
    [39] YAO Q, CHEN L, ZHANG W, et al. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites[J]. ACS Nano,2010,4(4):2445-2451. doi: 10.1021/nn1002562
    [40] LI J, HUCKLEBY A B, ZHANG M. Polymer-based thermoelectric materials: A review of power factor improving strategies[J]. Journal of Materiomics,2022,8(1):204-220. doi: 10.1016/j.jmat.2021.03.013
    [41] KIM D, KIM Y, CHOI K, et al. Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3, 4-ethylenedioxythiophene) poly(styrenesulfonate)[J]. ACS Nano,2010,4(1):513-523. doi: 10.1021/nn9013577
    [42] 张自勤, 牛斌娜, 李豪杰, 等. 碲化铋基热电材料复合改性的研究进展[J]. 电镀与精饰, 2021, 43(11):48-54. doi: 10.3969/j.issn.1001-3849.2021.11.009

    ZHANG Z Q, NIU B N, LI H J, et al. Research progress in composite modification of bismuth telluride based thermoelectric materials[J]. Plating & Finishing,2021,43(11):48-54(in Chinese). doi: 10.3969/j.issn.1001-3849.2021.11.009
    [43] 王聪, 康伟峰, 张林慧, 等. 碲化铋纳米材料的制备及其应用研究进展[J]. 中国粉体技术, 2021, 27(5):111-119.

    WANG C, KANG W F, ZHANG L H, et al. Preparation and application of Bi2Te3 nanomaterials: A review[J]. China Powder Science and Technology,2021,27(5):111-119(in Chinese).
    [44] 李敬锋, 张波萍, 周敏, 等. 高性能纳米复合结构热电材料与微器件技术[Z]. 2011-06-23.

    LI J F, ZHANG B P, ZHOU M, et al. High-performance nanocomposite thermoelectric materials and microdevices[Z]. 2011-06-23.
    [45] ZHU T, XU Z, HE J, et al. Hot deformation induced bulk nanostructuring of unidirectionally grown p-type (Bi, Sb)2Te3 thermoelectric materials[J]. Journal of Materials Chemistry A,2013,1(38):11589-11594. doi: 10.1039/c3ta12764h
    [46] HAO F, QIU P, TANG Y, et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300℃[J]. Energy & Environmental Science,2016,9(10):3120-3127.
    [47] HONG M, CHASAPIS T C, CHEN Z, et al. n-Type Bi2Te3-xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings[J]. ACS Nano,2016,10(4):4719-4727. doi: 10.1021/acsnano.6b01156
    [48] XING L, CUI W, SANG X, et al. Enhanced thermoelectric performance and atomic-resolution interfacial structures in BiSbTe thermo-electro-magnetic nanocomposites incorporating magnetocaloric LaFeSi nanoparticles[J]. Journal of Materiomics,2021,7(5):998-1006. doi: 10.1016/j.jmat.2021.02.013
    [49] LI J, TAN Q, LI J, et al. BiSbTe-based nanocomposites with high ZT: The effect of SiC nanodispersion on thermoelectric properties[J]. Advanced Functional Materials,2013,23(35):4317-4323. doi: 10.1002/adfm.201300146
    [50] KIM S I, LEE K H, MUN H A, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics[J]. Science,2015,348(6230):109-114. doi: 10.1126/science.aaa4166
    [51] ONARI S, CARDONA M. Raman-scattering in II-IV semiconductors Mg2Si, Mg2Ge, and Mg2Sn[J]. Physical Review B,1976,14(8):3520-3531. doi: 10.1103/PhysRevB.14.3520
    [52] 张强, 李家荡, 胡良禄, 等. Mg3Sb2基热电材料的研究进展[J]. 太原理工大学学报, 2021, 52(5):683-692.

    ZHANG Q, LI J D, HU L L, et al. Research progress on Mg3Sb2-based thermoelectric materials[J]. Journal of Tai-yuan University of Technology,2021,52(5):683-692(in Chinese).
    [53] LIU Z, GAO W, OSHIMA H, et al. Maximizing the perfor-mance of n-type Mg3Bi2 based materials for room-temper-ature power generation and thermoelectric cooling[J]. Nature Communications,2022,13(1):1120. doi: 10.1038/s41467-022-28798-4
    [54] HAN Z, GUI Z, ZHU Y B, et al. The electronic transport channel protection and tuning in real space to boost the thermoelectric performance of Mg3+δSb2-yBiy near room temperature[J]. Research,2020(4):1672051.
    [55] LIU W, ZHANG Q, TANG X, et al. Thermoelectric properties of Sb-doped Mg2Si0.3Sn0.7[J]. Journal of Electronic Materials,2011,40(5):1062-1066. doi: 10.1007/s11664-011-1541-0
    [56] TAMAKI H, SATO H K, KANNO T. Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered Zintl compounds with high thermoelectric performance[J]. Advanced Materials,2016,28(46):10182-10187. doi: 10.1002/adma.201603955
    [57] MAO J, ZHU H, DING Z, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials[J]. Science,2019,365(6452):495-498. doi: 10.1126/science.aax7792
    [58] YANG J, LI G, ZHU H, et al. Next-generation thermoelectric cooling modules based on high-performance Mg3(Bi, Sb)2 material[J]. Joule,2022,6(1):193-204. doi: 10.1016/j.joule.2021.11.008
    [59] PEI Y, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature,2011,473(7345):66-69. doi: 10.1038/nature09996
    [60] HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J]. Science,2008,321(5888):554-557. doi: 10.1126/science.1159725
    [61] BISWAS K, HE J, ZHANG Q, et al. Strained endotaxial nanostructures with high thermoelectric figure of merit[J]. Nature Chemistry,2011,3(2):160-166. doi: 10.1038/nchem.955
    [62] HSU K F, LOO S, GUO F, et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit[J]. Science,2004,303(5659):818-821. doi: 10.1126/science.1092963
    [63] XIAO Y, WU H, YIN M, et al. Remarkable roles of Cu to synergistically optimize phonon and carrier transport in n-type PbTe-Cu2Te[J]. Journal of the American Chemical Society,2017,139(51):18732-18738. doi: 10.1021/jacs.7b11662
    [64] XIAO Y, WANG D, ZHANG Y, et al. Band sharpening and band alignment enable high quality factor to enhance thermoelectric performance in n-type PbS[J]. Journal of the American Chemical Society,2020,142(8):4051-4060. doi: 10.1021/jacs.0c00306
    [65] TANG Y, QIU Y, XI L, et al. Phase diagram of In-Co-Sb system and thermoelectric properties of In-containing skutterudites[J]. Energy & Environmental Science,2014,7(2):812-819.
    [66] SHI X, YANG J, SALVADOR J R, et al. Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. Journal of the American Chemical Society,2011,133(20):7837-7846. doi: 10.1021/ja111199y
    [67] 丁娟, 刘睿恒, 顾辉, 等. YbyCo4Sb12/Yb2O3热电复合材料的高温稳定性研究[J]. 无机材料学报, 2014, 29(2):209-214. doi: 10.3724/SP.J.1077.2014.13261

    DING J, LIU R H, GU H, et al. Study on the high temper-ature stability of YbyCo4Sb12/Yb2O3 composite thermoelectric material[J]. Journal of Inorganic Materials,2014,29(2):209-214(in Chinese). doi: 10.3724/SP.J.1077.2014.13261
    [68] SHI X, CHEN L, YANG J, et al. Enhanced thermoelectric figure of merit of CoSb3 via large-defect scattering[J]. Applied Physics Letters,2004,84(13):2301-2303. doi: 10.1063/1.1687997
    [69] ZHAO X Y, SHI X, CHEN L D, et al. Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties[J]. Applied Physics Letters,2006,89(9):92121. doi: 10.1063/1.2345249
    [70] LI H, TANG X, ZHANG Q, et al. High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase[J]. Applied Physics Letters,2009,94(10):102114. doi: 10.1063/1.3099804
    [71] ZHAO W, LIU Z, SUN Z, et al. Superparamagnetic enhancement of thermoelectric performance[J]. Nature,2017,549(7671):247-251. doi: 10.1038/nature23667
    [72] ZHAO L, LO S, ZHANG Y, et al. Ultralow thermal conducti-vity and high thermoelectric figure of merit in SnSe crystals[J]. Nature,2014,508(7496):373-377. doi: 10.1038/nature13184
    [73] ZHOU Y, ZHAO L. Promising thermoelectric bulk mater-ials with 2D structures[J]. Advanced Materials,2017,29(45):1702676. doi: 10.1002/adma.201702676
    [74] CHANG C, WU M, HE D, et al. 3D charge and 2D phonon transports leading to high out-of-planeZT in n-type SnSe crystals[J]. Science,2018,360(6390):778-783. doi: 10.1126/science.aaq1479
    [75] ZHAO Q, WANG D, QIN B, et al. Synergistically optimized electrical and thermal transport properties of polycrystalline SnSe via alloying SnS[J]. Journal of Solid State Che-mistry, 2019, 273(3): 85-91.
    [76] ZHAO Q, QIN B, WANG D, et al. Realizing high thermoelectric performance in polycrystalline SnSe via silver doping and germanium alloying[J]. ACS Applied Energy Materials, 2020, 3(3): 2049-2054.
    [77] ZHAO L, TAN G, HAO S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe[J]. Science,2016,351(6269):141-144. doi: 10.1126/science.aad3749
    [78] QIN B, ZHANG Y, WANG D, et al. Ultrahigh average ZT rea-lized in p-type SnSe crystalline thermoelectrics through producing extrinsic vacancies[J]. Journal of the American Chemical Society,2020,142(12):5901-5909. doi: 10.1021/jacs.0c01726
    [79] QIN B, WANG D, LIU X, et al. Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments[J]. Science,2021,373(6554):556-561. doi: 10.1126/science.abi8668
    [80] XING T, ZHU C, SONG Q, et al. Ultralow lattice thermal conductivity and superhigh thermoe-lectric figure-of-merit in (Mg, Bi) Co-doped GeTe[J]. Advanced Materials, 2021, 33(17): 2008773.
    [81] HONG M, WANG Y, LIU W, et al. Arrays of planar vacancies in superior thermoelectric Ge1−xyCdxBiyTe with band convergence[J]. Advanced Energy Materials,2018,8(30):1801837. doi: 10.1002/aenm.201801837
    [82] ZHANG X, LI J, WANG X, et al. Vacancy manipulation for thermoelectric enhancements in GeTe alloys[J]. Journal of the American Chemical Society,2018,140(46):15883-15888. doi: 10.1021/jacs.8b09375
    [83] QIU Y, JIN Y, WANG D, et al. Realizing high thermoelectric performance in GeTe through decreasing the phase tran-sition temperature via entropy engineering[J]. Journal of Materials Chemistry A,2019,7(46):26393-26401. doi: 10.1039/C9TA10963C
    [84] ZHANG Q, TI Z, ZHU Y, et al. Achieving ultralow lattice thermal conductivity and high thermoelectric perfor-mance in GeTe alloys via introducing Cu2Te nanocrystals and resonant level doping[J]. ACS Nano,2021,15(12):19345-19356. doi: 10.1021/acsnano.1c05650
    [85] WU D, ZHAO L, HAO S, et al. Origin of the high perfor-mance in GeTe-based thermoelectric materials upon Bi2Te3 doping[J]. Journal of the American Chemical Society,2014,136(32):11412-11419. doi: 10.1021/ja504896a
    [86] JIN Y, WANG D, HONG T, et al. Outstanding CdSe with multiple functions leads to high performance of GeTe thermoelectrics[J]. Advanced Energy Materials,2022,12(10):2103779. doi: 10.1002/aenm.202103779
    [87] ZHANG Y, LIU S, KOH J J, et al. Construction of a hierarchical multiscale conducting network for enhanced thermoelectric response in organic PEDOT: PSS based nanocomposites[J]. Journal of Materiomics,2021,7(1):34-39. doi: 10.1016/j.jmat.2020.06.014
    [88] LIN Y, LEE T, HSIAO Y, et al. Facile synthesis of diamino-modified graphene/polyaniline semi-interpenetrating networks with practical high thermoelectric performance[J]. ACS Applied Materials & Interfaces,2018,10(5):4946-4952.
    [89] WANG L, ZHANG Z, GENG L, et al. Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-perfor-mance flexible n-type thermoelectrics[J]. Energy & Envi-ronmental Science,2018,11(5):1307-1317.
    [90] WANG L, ZHANG Z, LIU Y, et al. Exceptional thermoelectric properties of flexible organic−inorganic hybrids with monodispersed and periodic nanophase[J]. Nature Communications,2018,9(1):3817. doi: 10.1038/s41467-018-06251-9
    [91] PAN C, ZHANG L, PAN Z, et al. A simple strategy to fabricate polyaniline/expanded graphite composites with improved power factor[J]. Materials Chemistry and Physics,2015,167:315-319. doi: 10.1016/j.matchemphys.2015.10.050
    [92] WANG Y, ZHANG S M, DENG Y. Flexible low-grade energy utilization devices based on high-performance thermoelectric polyaniline/tellurium nanorod hybrid films[J]. Jour-nal of Materials Chemistry A,2016,4(9):3554-3559. doi: 10.1039/C6TA01140C
    [93] WANG Y, LIU G, SHENG M, et al. Flexible thermopower generation over broad temperature range by PANI/nano-rod hybrid-based p-n couples[J]. Journal of Materials Chemistry A,2019,7(4):1718-1724. doi: 10.1039/C8TA11008E
    [94] JIANG C, WEI P, DING Y, et al. Ultrahigh performance polyvinylpyrrolidone/Ag2Se composite thermoelectric film for flexible energy harvesting[J]. Nano Energy,2021,80:105488. doi: 10.1016/j.nanoen.2020.105488
    [95] WANG S, XIAO Y, REN D, et al. Enhancing thermoelectric performance of BiSbSe3 through improving carrier mobi-lity via percolating carrier transports[J]. Journal of Alloys and Compounds,2020,836:155473. doi: 10.1016/j.jallcom.2020.155473
  • 加载中
图(11)
计量
  • 文章访问数:  1197
  • HTML全文浏览量:  262
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-05-11
  • 录用日期:  2022-05-17
  • 网络出版日期:  2022-05-27
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回