留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti3C2TX MXenes材料在超级电容器中的应用研究进展

张亚林 王梦倩 陈兴刚 蔡艳青 许莹

张亚林, 王梦倩, 陈兴刚, 等. Ti3C2TX MXenes材料在超级电容器中的应用研究进展[J]. 复合材料学报, 2023, 40(2): 678-687. doi: 10.13801/j.cnki.fhclxb.20220412.002
引用本文: 张亚林, 王梦倩, 陈兴刚, 等. Ti3C2TX MXenes材料在超级电容器中的应用研究进展[J]. 复合材料学报, 2023, 40(2): 678-687. doi: 10.13801/j.cnki.fhclxb.20220412.002
ZHANG Yalin, WANG Mengqian, CHEN Xinggang, et al. Research progress of application of Ti3C2TX MXenes materials in supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 678-687. doi: 10.13801/j.cnki.fhclxb.20220412.002
Citation: ZHANG Yalin, WANG Mengqian, CHEN Xinggang, et al. Research progress of application of Ti3C2TX MXenes materials in supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 678-687. doi: 10.13801/j.cnki.fhclxb.20220412.002

Ti3C2TX MXenes材料在超级电容器中的应用研究进展

doi: 10.13801/j.cnki.fhclxb.20220412.002
基金项目: 河北省自然科学基金(E20209097);唐山市科技计划项目(21130229C)
详细信息
    通讯作者:

    蔡艳青,博士,副教授,硕士生导师,研究方向为储能材料、熔盐电化学、医用生物材料等 E-mail:caiyanqing126@126.com

  • 中图分类号: TB332

Research progress of application of Ti3C2TX MXenes materials in supercapacitors

Funds: Natural Science Foundation of Hebei Province ( E20209097); Science and Technology Project of Tangshan City (21130229C)
  • 摘要: 近年来人们对储能设备的需求加大,超级电容器因其优异的性能而受到研究者青睐。二维过渡MXenes材料是一种类似于石墨烯的二维片层材料,具有独特的结构和丰富的官能团,其中Ti3C2TX MXenes材料因其具有优异的导电性、高比面积和高比电容等优点而被广泛用作超级电容器电极材料。然而,Ti3C2TX材料存在易氧化和自堆叠等问题,作为电极材料需要对其性能进行改性和优化。本文主要介绍了Ti3C2TX材料常用的制备方法(如HF刻蚀、氟化盐刻蚀、碱刻蚀、电化学刻蚀等)及Ti3C2TX在超级电容器应用过程的性能改性研究现状,包括构建Ti3C2TX多孔结构、进行表面修饰及制备Ti3C2TX复合电极,并展望了Ti3C2TX型超级电容器未来的发展趋势。

     

  • 图  1  前驱体MAX刻蚀过程示意图 (a) 及形貌 ((b), (c))[6]

    Figure  1.  Schematic diagram (a) and morphology of precursor MAX etching process ((b), (c))[6]

    图  2  碱性条件下合成Ti3C2TX[26]

    Figure  2.  Synthesis of Ti3C2TX under alkaline conditions[26]

    图  3  阳离子交联Ti3C2TX示意图[42]

    Figure  3.  Schematic diagram of cationic crosslinked Ti3C2TX[42]

    图  4  将Li+引入Ti3C2TX的XRD图谱[48]

    Figure  4.  XRD pattern of introducing Li+ into Ti3C2TX[48]

    图  5  烷基阳离子插层Ti3C2TX示意图[50]

    Figure  5.  Schematic diagram of alkyl cation intercalated Ti3C2TX[50]

    图  6  Ti3C2TX的TG曲线[51]

    Δm—Mass loss rate

    Figure  6.  TG curves of Ti3C2TX[51]

    图  7  将S插入Ti3C2TX流程示意图[52]

    CTAB—Cetyltri-methylammonium bromide; d—Interlayer spacing

    Figure  7.  Flow diagram of insert S into Ti3C2TX[52]

    图  8  MXenes/碳纳米管(CNTs)制备过程示意图[54]

    Figure  8.  Schematic diagram of preparation process for MXenes/carbon nanotubes (CNTs)[54]

    图  9  Ti3C2TX@CNTs电化学测试图[55]:不同电极的CV曲线 (a) 和GCD曲线 (b);Ti3C2TX@CNTs-6.0电极的CV曲线 (c) 和GCD曲线 (d)

    a—Ti3C2TX; b—Ti3C2TX@PDA; c—Ti3C2TX@CNTs-6.0-PDA-0; d—Ti3C2TX@CNTs-3.0; e—Ti3C2TX@CNTs-6.0; f—Ti3C2TX@CNTs-15.0; g—Ti3C2TX@CNTs-20.0; PDA—Polydopamine

    Figure  9.  Electrochemical test of Ti3C2TX@CNTs[55]: CV curves (a) and GCD curves (b) of different electrodes; CV curves (c) and GCD curves (d) of Ti3C2TX@CNTs-6.0 electrode

    图  10  Ti3C2TX@MnO2电化学测试图:(a) CV曲线;(b) GCD曲线 ;(c) 比电容;(d) Nyquist曲线;(e) EIS图谱等效电路;(f) 3 A·g−1下的循环稳定性[55]

    a—Ti3C2TX; b—Ti3C2TX@PDA; c—Ti3C2TX@δ-MnO2 NSs; d—Ti3C2TX@α-MnO2 NRs; e—Ti3C2TX@α-MnO2 NFs; f—Ti3C2TX@α-MnO2 NWs; NSs, NRs, NFs, NWs—Different morphology; Re—Equivalent serier resistance; Rct—Charge tranfer resistance; CL—Constant phase element; Zw—Warburg element; Cdl—Capacitor; SCE—Saturated calomel electrode

    Figure  10.  Electrochemical test of Ti3C2TX@MnO2: (a) CV curves; (b) GCD curves; (c) Specific capacitances; (d) Nyquist curves; (e) Equivalent circuit of EIS map; (f) Cycle stability under 3 A·g−1[55]

  • [1] XU B, GOGOTSI Y. MXenes: From discovery to applications[J]. Advanced Functional Materials,2020,30(47):2007011. doi: 10.1002/adfm.202007011
    [2] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials,2017,2(2):1-17.
    [3] VERGER L, NATU V, CAREY M, et al. MXenes: An introduction of their synthesis, select properties, and applications[J]. Trends in Chemistry,2019,1(7):656-669. doi: 10.1016/j.trechm.2019.04.006
    [4] 刘俊杰, 杨雯杰, 杨伟, 等. MXene基薄膜的有序组装及其在储能和电磁干扰屏蔽中的应用[J]. 复合材料学报, 2021, 38(8):2404-2417.

    LIU Junjie, YANG Wenjie, YANG Wei, et al. Ordered assembly of MXene based composite films and their applications in energy storage and electromagnetic interference shielding[J]. Acta Materiae Compositae Sinica,2021,38(8):2404-2417(in Chinese).
    [5] 曾广勇, 王彬, 张俊, 等. 二维MXene膜的构筑及在水处理应用中的研究进展[J]. 复合材料学报, 2021, 38(7):2078-2091.

    ZENG Guangyong, WANG Bin, ZHANG Jun, et al. Construction of two-dimensional MXene membrane and its research progress of application in water treatment[J]. Acta Materiae Compositae Sinica,2021,38(7):2078-2091(in Chinese).
    [6] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS Nano,2012,6(2):1322-1331. doi: 10.1021/nn204153h
    [7] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
    [8] SHAO Y, EL-KADY M F, SUN J, et al. Design and mecha-nisms of asymmetric supercapacitors[J]. Chemical Reviews,2018,118(18):9233-9280. doi: 10.1021/acs.chemrev.8b00252
    [9] HUI X, GE X, ZHAO R, et al. Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance[J]. Advanced Functional Materials,2020,30(50):2005190. doi: 10.1002/adfm.202005190
    [10] BAI Y, LIU C, CHEN T, et al. MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitors[J]. Angwandte Chemie International Edition,2021,60:25318-25322. doi: 10.1002/anie.202112381
    [11] SHAHZAD F, IQBAL A, HYERIM K, et al. 2D transition metal carbides (MXenes): Applications as an electrically conducting material[J]. Advanced Materials,2020,32:2002159. doi: 10.1002/adma.202002159
    [12] GUO Y, QI J, JIANG Y, et al. Performance of electrical double layer capacitors with porous carbons derived from rice husk[J]. Materials Chemistry and Physics,2003,80(3):704-709. doi: 10.1016/S0254-0584(03)00105-6
    [13] TEO E Y L, MUNIANDY L, NG E P, et al. High surface area activated carbon from rice husk as a high-performance supercapacitor electrode[J]. Electrochimica Acta,2016,192:110-119. doi: 10.1016/j.electacta.2016.01.140
    [14] ZHANG C, MA Y, ZHANG X, et al. Two-dimensional transition metal carbides and nitrides (MXene): Synthesis, properties, and electrochemical energy storage application[J]. Energy & Environmental Materials,2020,3(1):29-55.
    [15] HU M, ZHANG H, HU T, et al. Emerging 2D MXenes for supercapacitors: Status, challenges and prospects[J]. Chemical Society Reviews,2020,49(18):6666-6693. doi: 10.1039/D0CS00175A
    [16] FANG R, LU C, CHEN A, et al. 2D MXene-based energy storage materials: Interfacial structure design and functionalization[J]. ChemSusChem,2019,13(6):1409-1419.
    [17] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-diomensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [18] SRIVASTAVA P, MISHRA A, MIZUSEKI H, et al. Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene[J]. ACS Applied Materials & Interfaces,2016,8(36):24256-24264.
    [19] WANG X, SHEN X, GAO Y, et al. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X[J]. Journal of the American Chemical Society,2015,137(7):2715-2721. doi: 10.1021/ja512820k
    [20] ANASORI B, XIE Y, BEIDAGHI M, et al. Two-dimensional, ordered, double transition metals carbides (MXene)[J]. ACS Nano,2015,9(10):9507-9516. doi: 10.1021/acsnano.5b03591
    [21] ANASORI B, SHI C, MOON E J, et al. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers[J]. Nanoscale Horizons,2016,1(3):227-234. doi: 10.1039/C5NH00125K
    [22] LI Y, DENG Y, ZHANG J, et al. ConTunable energy storage capacity of two-dimensional Ti3C2TX modified by a facile two-step pillaring strategy for high performance supercapacitor electrodes[J]. Nanoscale,2019,11(45):21981-21989. doi: 10.1039/C9NR07259D
    [23] HALIM J, KOTA S, LUKATSKAYA M R, et al. Synthesis and characterization of 2D molybdenum carbide (MXene)[J]. Advanced Functional Materials,2016,26(18):3118-3127. doi: 10.1002/adfm.201505328
    [24] SHE Z W, FREDRICKSON K D, ANASORI B, et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution[J]. ACS Energy Letters,2016,1(3):589-594. doi: 10.1021/acsenergylett.6b00247
    [25] PANG J, MENDES R G, BACHMATIUK A, et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews,2019,48(1):72-133. doi: 10.1039/C8CS00324F
    [26] ZHANG X, LIU Y, DONG S, et al. Surface modified MXene film as flexible electrode with ultrahigh volumetric capacitance[J]. Electrochimica Acta,2019,294:233-239. doi: 10.1016/j.electacta.2018.10.096
    [27] LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti3C2TX (T=OH, O) via alkali treatment[J]. Angewandte Chemie International Edition,2018,57(21):6115-6119. doi: 10.1002/anie.201800887
    [28] LI J, YUAN X T, LIN C, et al. Achieving high pseudo capacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification[J]. Advanced Energy Materials,2017,7(15):1602725. doi: 10.1002/aenm.201602725
    [29] SUN W, SHAH S, CHEN Y, et al. Electrochemical etching of Ti2AlC to Ti2CTX (MXene) in low-concentration hydrochloric acid solution[J]. Journal of Materials Chemistry A,2017,5(41):21663-21668. doi: 10.1039/C7TA05574A
    [30] PANG S Y, WONG Y T, YUAN S, et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials[J]. Journal of the American Chemical Society,2019,141(24):9610-9616. doi: 10.1021/jacs.9b02578
    [31] LI Y, SHAO H, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials,2020,19(8):894-899. doi: 10.1038/s41563-020-0657-0
    [32] XU C, WANG L, LIU Z, et al. Large-area high-quality 2D ultrathin MO2C superconducting crystals[J]. Nature Materials,2015,14(11):1135-1141. doi: 10.1038/nmat4374
    [33] LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science,2013,341(6153):1502-1505. doi: 10.1126/science.1241488
    [34] SHPIGEL N, LEVI M D, SIGALOV S, et al. Direct assessment of nanoconfined water in 2D Ti3C2 electrode interspaces by a surface acoustic technique[J]. Journal of the American Chemical Society,2018,140(28):8910-8917. doi: 10.1021/jacs.8b04862
    [35] OKUBO M, SUGAHARA A, KAJIYAMA S, et al. MXene as a charge storage host[J]. Accounts of Chemical Research,2018,51(3):591-599. doi: 10.1021/acs.accounts.7b00481
    [36] LEVI M D, LUKATSKAYA M R, SIGALOV S, et al. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements[J]. Advanced Energy Materials,2015,5(1):1400815. doi: 10.1002/aenm.201400815
    [37] SUGAHARA A, ANDO Y, KAJIYAMA S, et al. Negative dielectric constant of water confined in nanosheets[J]. Nature Communications,2019,10(1):1-7. doi: 10.1038/s41467-018-07882-8
    [38] ZHENG L, HUA Q, LI X, et al. Investigation on the effect of Nb doping on the oxidation mechanism of Ti3SiC2[J]. Corrosion Science,2018,140(1):374-378. doi: 10.1016/j.corsci.2018.05.028
    [39] ZANG X, WANG J, QIN Y, et al. Enhancing capacitance performance of Ti3C2TX Mxene as electrode materials of supercapacitor: From controlled preparation to composite structure construction[J]. Nano-Micro Letters,2020,12(1):1-24. doi: 10.1007/s40820-019-0337-2
    [40] LI L, WEN J, ZHANG X. Progress of two-dimensional Ti3C2TX in supercapacitors[J]. ChemSusChem,2020,13(6):1296-1329. doi: 10.1002/cssc.201902679
    [41] LUO J, MATIOS E, WANG H, et al. Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion[J]. InfoMat,2020,2(6):1057-1076. doi: 10.1002/inf2.12118
    [42] DENG Y, SHANG T, WU Z, et al. Fast gelation of Ti3C2TX MXene initiated by metal ion[J]. Advanced Materials,2019,31(43):1902432. doi: 10.1002/adma.201902432
    [43] ZHOU Z, LIU J, ZHANG X, et al. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding[J]. Advanced Materials Interfaces,2019,6(6):1802040. doi: 10.1002/admi.201802040
    [44] ZHANG P, ZHU Q, RAZIUM A, et al. In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors[J]. Advanced Functional Materials,2020,30:2000922. doi: 10.1002/adfm.202000922
    [45] ZHAO M Q, XIE X, REN C E, et al. Hollow MXene spheres and 3D microporous MXene frameworks for Na-ion storage[J]. Advanced Materials,2017,29(37):1702410. doi: 10.1002/adma.201702410
    [46] TANG J, HUANG X, QIU T, et al. Interlayer space engineering of MXenes for electrochemical energy storage applications[J]. Chemistry—A European Journal, 2021, 27(6): 1921-1940.
    [47] GAO L, BAO W, ARTEM V K, et al. Hetero-MXenes: Theory, synthesis, and emerging applications[J]. Advanced Materials,2021,33:2004129. doi: 10.1002/adma.202004129
    [48] GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. doi: 10.1038/nature13970
    [49] MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications,2013,4(1):1-7.
    [50] GHIDIU M, KOTA S, HALIM J, et al. Alkylammonium cation intercalation into Ti3C2(MXene): Effects on properties and ion-exchange capacity estimation[J]. Chemistry of Materials,2017,29(3):1099-1106. doi: 10.1021/acs.chemmater.6b04234
    [51] LI Z, WANG L, SUN D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2[J]. Materials Science and Engineering: B,2015,191:33-40. doi: 10.1016/j.mseb.2014.10.009
    [52] LUO J, ZHENG J, NAI J, et al. Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance[J]. Advanced Functional Materials,2019,29(10):1808107. doi: 10.1002/adfm.201808107
    [53] WEN Y, RUFFORD T E, CHEN X, et al. Nitrogen-doped Ti3C2TX MXene electrodes for high-performance supercapacitors[J]. Nano Energy,2017,38:368-376. doi: 10.1016/j.nanoen.2017.06.009
    [54] ZHAO M Q, REN C E, LING Z, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J]. Advanced Functional Materials,2015,27(2):339-345. doi: 10.1002/adma.201404140
    [55] 李学林. 二维Ti3C2TX基复合材料的改性及其超级电容器性能研究[D]. 西安: 陕西科技大学, 2021.

    LI Xuelin. Study on modification of two-dimensional Ti3C2TX-based composites and their supercapacitor pro-perties[D]. Xi'an: Shaanxi University of Science and Technology, 2021(in Chinese).
    [56] LE T A, TRAN N Q, HONG Y, et al. Intertwined titanium carbide MXene within a 3D tangled polypyrrole nanowires matrix for enhanced supercapacitor performances[J]. Chemistry-A European Journal,2019,25(4):1037-1043.
    [57] 黄兰香, 罗旭峰. 用于可充电水性锌离子电池的先进Ti3C2@ε-MnO2电极[J]. 复合材料学报, 2022, 39(10):4631-4641.

    HUANG Lanxiang, LUO Xufeng. Advanced Ti3C2@ε-MnO2 cathode as rechargeable aqueous zinc-ion batteries[J]. Acta Materiae Compositae Sinica,2022,39(10):4631-4641(in Chinese).
    [58] 崔丽华, 王岩, 舒霞, 等. MnO2/TiO2复合物电极的制备及超级电容性能[J]. 复合材料学报, 2016, 33(8):1794-1802.

    CUI Lihua, WANG Yan, SHU Xia, et al. Preparation and supercapacitive performance of MnO2/TiO2 composite electrodes[J]. Acta Materiae Compositae Sinica,2016,33(8):1794-1802(in Chinese).
  • 加载中
图(10)
计量
  • 文章访问数:  979
  • HTML全文浏览量:  411
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-25
  • 修回日期:  2022-03-25
  • 录用日期:  2022-04-06
  • 网络出版日期:  2022-04-13
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回