Preparation and its Cr(VI) adsorption properties of biomimetic FeS composites
-
摘要: 纳米FeS比表面积大且还原性强,对Cr(VI)吸附性能优异,但不稳定、易团聚,为解决这一问题,本文以油菜花粉为生物模板,通过共沉淀-焙烧法制得仿生FeS复合材料(bioFeS)。通过SEM、XRD及XPS等方法对bioFeS复合材料的表面微观形态和结构进行了表征。以Cr(VI)为目标污染物,分别考察了吸附剂用量、反应时间、反应温度、初始Cr(VI)浓度和pH对bioFeS复合材料吸附Cr(VI)性能的影响,探究了反应机制。结果表明:油菜花粉生物模板成功分散了FeS,制得的bioFeS复合材料比表面积大,在反应时间为120 min、pH值为1、吸附剂投加量为0.2 g·L−1、反应温度为25℃的条件下,bioFeS复合材料对Cr(VI)的吸附量可达88.95 mg·g−1;该吸附过程符合准二级动力学和Langmuir等温吸附模型;共存离子NO3−和SO42−会抑制Cr(VI)的去除。结合吸附动力学、热力学及XPS表面元素分析可知bioFeS复合材料除铬机制主要是吸附及化学还原作用。bioFeS复合材料处理含铬废水具有广阔的应用前景。Abstract: Nano FeS has excellent adsorption performance for Cr(VI) because of large specific surface area and strong reducibility, but it is unstable and prone to agglomeration. In order to overcome these disadvantages, the biomimetic FeS composites (bioFeS) were prepared by co-precipitation-roasting method using rape pollen as a biological template. The surface morphology and structure of bioFeS composites were characterized by SEM, XRD and XPS. The effects of adsorbent dosage, reaction time, reaction temperature, initial Cr(VI) concentration and pH on adsorption capacity of Cr(VI) on bioFeS composites were studied to investigate the reaction mechanism using Cr(VI) as the target pollutant. The results show that rape pollen biotemplate successfully disperse FeS with a large specific surface area. The adsorption capacity of Cr(VI) on bioFeS composites can reach 88.95 mg·g−1 at a reaction time of 120 min, pH of 1, adsorbent dosing of 0.2 g·L−1 and a reaction temperature of 25℃. The adsorption process conforms to quasi-secondary kinetics and the Langmuir isothermal adsorption model. The coexisting ions NO3− and SO42− will inhibit the adsorption capacity of Cr(VI). Combining with adsorption kinetics, thermodynamics and XPS surface element analysis, the mechanism of chromium removal by bioFeS composites mainly involves adsorption and chemical reduction. The method of removal of Cr(VI) in wastewater by bioFeS composites has a promising application.
-
Key words:
- FeS /
- pollen /
- composites /
- adsorption /
- Cr(VI) /
- biotemplate
-
表 1 bioFeS复合材料BET比表面积和孔隙性质
Table 1. BET surface areas and pore properties of bioFeS composites
Sample SBET/
(m2·g−1)Pore volume/
(cm3·g−1)Pore size/
nmFeS 15.59 0.038 11.87 bioFeS
composites173.51 0.122 5.78 Note: SBET—BET surface area. 表 2 不同吸附剂吸附Cr(VI)的动力学参数
Table 2. Kinetic parameters of Cr(VI) adsorption by various adsorbents
Adsorbent Pseudo-first order model Pseudo-second order model k1/min−1 R2 qe/(mg·g−1) k2/(g·mg−1·min−1) R2 qe/(mg·g−1) bioFeS composites 0.0481 0.991 37.728 0.012 0.998 88.574 Roasting FeS 0.0396 0.914 31.325 0.007 0.978 69.686 FeS 0.0430 0.900 29.964 0.004 0.987 65.726 Roasting pollen 0.0329 0.923 33.016 0.001 0.633 44.952 Notes: qe—Amount of adsorption at equilibrium; k1—Quasi-first-order kinetic model constant; k2—Quasi-second-order kinetic model constant; R—Correlation coefficient. 表 3 bioFeS复合材料吸附Cr(VI)的Langmuir和Freundlich吸附等温线参数
Table 3. Langmuir and Freundlich adsorption isotherm parameters of Cr(VI) adsorption by bioFeS composites
Adsorbent Langmuir model Freundlich model b R2 Q0/(mg·g−1) KF R2 n bioFeS composites 0.013 0.997 94.967 8.692 0.990 1.454 Notes: Q0—Maximum adsorption capacity; b—Adsorption equilibrium constant of Langmuir model; KF—Adsorption equilibrium constant of Freundlich model; n—Adsorption strength constant in the Freundlich model. 表 4 bioFeS复合材料吸附Cr(VI)的热力学参数
Table 4. Thermodynamic parameters of Cr(VI) adsorption by bioFeS composites
C0/(mg·L−1) ΔG/(kJ·mol−1) ΔH/(kJ·mol−1) ΔS/(kJ·mol−1·K−1) 293 K 298 K 303 K 10 −21.082 −22.687 −23.270 43.211 0.220 20 −20.021 −21.016 −22.532 53.490 0.251 30 −19.103 −20.644 −21.734 58.052 0.264 50 −18.194 −20.237 −21.076 66.467 0.290 100 −17.186 −19.986 −20.786 88.616 0.362 150 −16.903 −19.308 −20.342 84.109 0.346 Notes: C0—Initial concentration of the solution; ΔH—Enthalpy; ΔS—Entropy; ΔG—Gibbs free energy. -
[1] LI Y X, HAN Y C, WANG C C. Fabrication strategies and Cr(VI) elimination activities of the MOF-derivatives and their composites[J]. Chemical Engineering Journal,2021,405:126648. doi: 10.1016/j.cej.2020.126648 [2] 闫潇, 刘兴宇, 张明江, 等. 铬污染的微生物吸附技术研究进展[J]. 稀有金属, 2021, 45(2):240-250.YAN Xiao, LIU Xingyu, ZHANG Mingjiang, et al. Research progress in biosorption technology for chromium contamination[J]. Chinese Journal of Raremetals,2021,45(2):240-250(in Chinese). [3] 狄婧, 刘海霞, 姜永强, 等. 聚吡咯/壳聚糖复合膜的制备及其对Cu(Ⅱ)和Cr(Ⅵ)吸附机制[J]. 复合材料学报, 2021, 38(1):221-231.DI Jing, LIU Haixia, JIANG Yongqiang, et al. Preparation of polypyrrole/chitosan composite membrane and its adsorption mechanism for Cu(Ⅱ) and Cr(Ⅵ)[J]. Acta Materiae Compositae Sinica,2021,38(1):221-231(in Chinese). [4] LIU L H, LIU X, WANG D Q, et al. Removal and reduction of Cr(Ⅵ) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge[J]. Journal of Cleaner Production,2020,257:120562. doi: 10.1016/j.jclepro.2020.120562 [5] 于艳杰, 吴莹, 方登志, 等. 曝气微电解混凝沉淀处理含砷铬废水[J]. 工业水处理, 2018, 38(2):82-84. doi: 10.11894/1005-829x.2018.38(2).082YU Yanjie, WU Ying, FANG Dengzhi, et al. Treatment of wastewater containing arsenic and chrome by aeration micro-electrolysis and coagulation-settlement process[J]. Industrial Water Treatment,2018,38(2):82-84(in Chinese). doi: 10.11894/1005-829x.2018.38(2).082 [6] WU Z, YUAN X, ZENG G, et al. Highly effcient photocatalytic activity and mechanism of Yb3+/Tm3+ codoped In2S3 from ultraviolet to near infrared light towards chromium(VI) reduction and Rhodamine B oxydative degradation[J]. Applied Catalysis B,2020,225:8-21. [7] YAO Y, MI N, HE C, et al. Humic acid modified nano-ferrous sulfide enhances the removal efficiency of Cr(VI)[J]. Separation and Purification Technology,2020,240:116623. doi: 10.1016/j.seppur.2020.116623 [8] 张华夏, 石林. 羧甲基纤维素钠稳定纳米硫化亚铁吸附砷研究[J]. 水处理技术, 2019, 45(4):37-42.ZHANG Huaxia, SHI Lin. Study on adsorption of arsenic on carboxymethylcellulose sodium stabilized ferrous sulfide nanoparticles[J]. Technology of Water Treatment,2019,45(4):37-42(in Chinese). [9] WU J, ZENG R J. In situ preparation of stabilized iron sulfide nanoparticle-impregnated alginate composite for selenite remedition[J]. Environmental Science and Technology,2018(52):6487-6496. [10] LYU H, TANG J, YAO H, et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite[J]. Chemical Engineering Journal,2017,322:516-524. doi: 10.1016/j.cej.2017.04.058 [11] 黄冠华, 刘序彦, 房晨曦, 等. 生物模板法制备磁性中空微球的方法和应用[J]. 化工进展, 2021, 40(5):2613-2623.HUANG Guanhua, LIU Xuyan, FANG Chenxi, et al. Methods and application of magnetic hollow microsphere prepared from bio-template[J]. Chemical Industry and Engi-neering Progress,2021,40(5):2613-2623(in Chinese). [12] 毕磊, 潘纲. 微生物自模板法制备多孔中空微球及应用[J]. 科学通报, 2014, 59(25):2440-2451. doi: 10.1360/972014-00173BI Lei, PAN Gang. Preparation and application of hollow microspheres with porous shell via microorganism self-template method[J]. Chinese Science Bulletin,2014,59(25):2440-2451(in Chinese). doi: 10.1360/972014-00173 [13] 张竞. 以花粉为模板的锂空气电池多孔碳电极的制备及其性能研究[D]. 昆明: 昆明理工大学, 2016.ZHANG Jing. Preparation and performance of porous carbon electrode for Li-air battery using pollen as template[D]. Kunming: Kunming University of Science and Technology, 2016(in Chinese). [14] 高雪, 刘宇彤, 王煜, 等. 生物模板法制备纳米氧化锌[J]. 化学通报, 2019, 82(1):63-67.GAO Xue, LIU Yutong, WANG Yu, et al. Preparation of zinc oxide nanomaterial by biotemplated method[J]. Che-mistry,2019,82(1):63-67(in Chinese). [15] 段胜聪, 孟自珍, 解晶, 等. 基于油菜花粉模板制备ZnAlCe三元复合氧化物多孔材料及其催化性能研究[J]. 无机材料学报, 2015, 30(4):421-426.DUAN Shengcong, MENG Zizhen, XIE Jing, et al. Preparation and catalytic property of ZnAlCe ternary complex oxide porous materials based on rape pollen biotemplates[J]. Journal of Inorganic Materials,2015,30(4):421-426(in Chinese). [16] 国家环境保护局规划标准处. 水质 六价铬的测定 二苯碳酰二肼分光光度法: GB/T 7467—1987[S]. 北京: 中国标准出版社, 1987.State Environmental Protection Agency. Water quality-Determination of hexavalent chromium diphenylcarbonyl hydrazine spectrophotometric method: GB/T 7467—1987[S]. Beijing: Standards Press of China,1987. [17] ZHANG H, LIANG P, CHEN A W, et al. Chitosan-stabilized FeS magnetic composites for chromium removal: Characterization, performance, mechanism, and stability[J]. Carbohydrate Polymers,2019,214:276-285. doi: 10.1016/j.carbpol.2019.03.056 [18] DIPTIMA D, SHYAMAL K S. Sulfuric acid doped poly diaminopyridine/graphene composite to remove high concentration of toxic Cr(VI)[J]. Journal of Hazardous Materials,2015,291:93-101. doi: 10.1016/j.jhazmat.2015.02.065 [19] DI IORIO E, COLOMBO C, CHENG Z Q, et al. Characterization of magnetite nanoparticles synthetized from Fe(II)/nitrate solutions for arsenic removal from water[J]. Journal of Enviromental Chemical Engineering,2019,7(2):102986. doi: 10.1016/j.jece.2019.102986 [20] LIANG Q, GENG J, LUO H, et al. Fast and selective removal of Cr(VI) from aqueous solutions by a novel magnetic Cr(VI) ion-imprinted polymer[J]. Journal of Molecular Liquids,2017,248:767-774. doi: 10.1016/j.molliq.2017.10.114 [21] ZHANG L, FU F L, TANG B. Adsorption and redox conversion behaviors of Cr(VI) on goethite/carbon microspheres and akaganeite/carbon microspheres composites[J]. Chemical Engineering Journal,2019,356:151-160. doi: 10.1016/j.cej.2018.08.224 [22] 郭成, 郝军杰, 李明阳, 等. 海藻酸钠/聚乙烯亚胺凝胶球的合成及对Cr(VI)的吸附性能和机制[J]. 复合材料学报, 2021, 38(7):2140-2151.GUO Cheng, HAO Junjie, LI Mingyang, et al. Adsorption of Cr(Ⅵ) on porous sodium alginate/polyethyleneimine hydrogel beads and its mechanistic study[J]. Acta Materiae Compositae Sinica,2021,38(7):2140-2151(in Chinese). [23] SUN Z, LIU Y, HUANG Y, et al. Fast adsorption of Cd2+ and Pb2+ by EGTA dianhydride (EGTAD) modified ramie fiber[J]. Journal of Colloid and Interface Science,2014,434:152-158. doi: 10.1016/j.jcis.2014.07.036