留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生FeS复合材料的制备及其对Cr(VI)的吸附性能

程爱华 常娟

程爱华, 常娟. 仿生FeS复合材料的制备及其对Cr(VI)的吸附性能[J]. 复合材料学报, 2023, 40(2): 884-892. doi: 10.13801/j.cnki.fhclxb.20220402.001
引用本文: 程爱华, 常娟. 仿生FeS复合材料的制备及其对Cr(VI)的吸附性能[J]. 复合材料学报, 2023, 40(2): 884-892. doi: 10.13801/j.cnki.fhclxb.20220402.001
CHENG Aihua, CHANG Juan. Preparation and its Cr(VI) adsorption properties of biomimetic FeS composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 884-892. doi: 10.13801/j.cnki.fhclxb.20220402.001
Citation: CHENG Aihua, CHANG Juan. Preparation and its Cr(VI) adsorption properties of biomimetic FeS composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 884-892. doi: 10.13801/j.cnki.fhclxb.20220402.001

仿生FeS复合材料的制备及其对Cr(VI)的吸附性能

doi: 10.13801/j.cnki.fhclxb.20220402.001
基金项目: 国家自然科学基金青年项目(51808442)National Natural Science Foundation Youth Project (51808442)
详细信息
    通讯作者:

    程爱华,博士,副教授,硕士生导师,研究方向为水处理技术 E-mail:cah_cheng@126.com

  • 中图分类号: TB332;X703.1

Preparation and its Cr(VI) adsorption properties of biomimetic FeS composites

  • 摘要: 纳米FeS比表面积大且还原性强,对Cr(VI)吸附性能优异,但不稳定、易团聚,为解决这一问题,本文以油菜花粉为生物模板,通过共沉淀-焙烧法制得仿生FeS复合材料(bioFeS)。通过SEM、XRD及XPS等方法对bioFeS复合材料的表面微观形态和结构进行了表征。以Cr(VI)为目标污染物,分别考察了吸附剂用量、反应时间、反应温度、初始Cr(VI)浓度和pH对bioFeS复合材料吸附Cr(VI)性能的影响,探究了反应机制。结果表明:油菜花粉生物模板成功分散了FeS,制得的bioFeS复合材料比表面积大,在反应时间为120 min、pH值为1、吸附剂投加量为0.2 g·L−1、反应温度为25℃的条件下,bioFeS复合材料对Cr(VI)的吸附量可达88.95 mg·g−1;该吸附过程符合准二级动力学和Langmuir等温吸附模型;共存离子NO3和SO42−会抑制Cr(VI)的去除。结合吸附动力学、热力学及XPS表面元素分析可知bioFeS复合材料除铬机制主要是吸附及化学还原作用。bioFeS复合材料处理含铬废水具有广阔的应用前景。

     

  • 图  1  FeS和仿生FeS(bioFeS)复合材料的SEM图像

    Figure  1.  SEM images of FeS and biomimetic FeS (bioFeS) composites

    图  9  bioFeS复合材料吸附Cr(VI)前后的XPS图谱:(a) C1s;(b) Fe2p;(c) S2p;(d) Cr2p

    Figure  9.  XPS spectra of bioFeS composites before and after adsorption of Cr(VI): (a) C1s; (b) Fe2p; (c) S2p; (d) Cr2p

    图  2  bioFeS复合材料的XRD图谱

    Figure  2.  XRD patterns of bioFeS composites

    图  3  FeS和bioFeS复合材料的孔径分布

    Figure  3.  Pore size distribution of FeS and bioFeS composites

    图  4  初始pH对bioFeS复合材料吸附Cr(VI)溶液Zeta电位及平衡pH的影响

    Figure  4.  Effect of initial pH on Zeta potential and equilibrium pH of adsorption Cr(VI) on bioFeS composites

    图  5  初始pH对bioFeS复合材料吸附Cr(VI)效果及铁离子浸出浓度的影响

    Figure  5.  Effect of initial pH on adsorption capacity of Cr(VI) on bioFeS composites and change of iron ion leaching concentration

    图  6  共存离子对bioFeS复合材料吸附Cr(VI)效果的影响

    Figure  6.  Effect of coexisting ions adsorption capacity of Cr(VI) on bioFeS composites

    图  7  不同吸附剂对Cr(VI)的吸附动力学

    Figure  7.  Adsorption kinetic of various adsorbents for Cr(VI)

    图  8  bioFeS复合材料的再生性

    Figure  8.  Regeneration property of bioFeS composites

    表  1  bioFeS复合材料BET比表面积和孔隙性质

    Table  1.   BET surface areas and pore properties of bioFeS composites

    SampleSBET/
    (m2·g−1)
    Pore volume/
    (cm3·g−1)
    Pore size/
    nm
    FeS 15.590.03811.87
    bioFeS
    composites
    173.510.122 5.78
    Note: SBET—BET surface area.
    下载: 导出CSV

    表  2  不同吸附剂吸附Cr(VI)的动力学参数

    Table  2.   Kinetic parameters of Cr(VI) adsorption by various adsorbents

    AdsorbentPseudo-first order modelPseudo-second order model
    k1/min−1R2qe/(mg·g−1)k2/(g·mg−1·min−1)R2qe/(mg·g−1)
    bioFeS composites0.04810.99137.7280.0120.99888.574
    Roasting FeS0.03960.91431.3250.0070.97869.686
    FeS0.04300.90029.9640.0040.98765.726
    Roasting pollen0.03290.92333.0160.0010.63344.952
    Notes: qe—Amount of adsorption at equilibrium; k1—Quasi-first-order kinetic model constant; k2—Quasi-second-order kinetic model constant; R—Correlation coefficient.
    下载: 导出CSV

    表  3  bioFeS复合材料吸附Cr(VI)的Langmuir和Freundlich吸附等温线参数

    Table  3.   Langmuir and Freundlich adsorption isotherm parameters of Cr(VI) adsorption by bioFeS composites

    AdsorbentLangmuir modelFreundlich model
    bR2Q0/(mg·g−1)KFR2n
    bioFeS composites0.0130.99794.9678.6920.9901.454
    Notes: Q0—Maximum adsorption capacity; b—Adsorption equilibrium constant of Langmuir model; KF—Adsorption equilibrium constant of Freundlich model; n—Adsorption strength constant in the Freundlich model.
    下载: 导出CSV

    表  4  bioFeS复合材料吸附Cr(VI)的热力学参数

    Table  4.   Thermodynamic parameters of Cr(VI) adsorption by bioFeS composites

    C0/(mg·L−1)ΔG/(kJ·mol−1)ΔH/(kJ·mol−1)ΔS/(kJ·mol−1·K−1)
    293 K298 K303 K
    10−21.082−22.687−23.27043.2110.220
    20−20.021−21.016−22.53253.4900.251
    30−19.103−20.644−21.73458.0520.264
    50−18.194−20.237−21.07666.4670.290
    100−17.186−19.986−20.78688.6160.362
    150−16.903−19.308−20.34284.1090.346
    Notes: C0—Initial concentration of the solution; ΔH—Enthalpy; ΔS—Entropy; ΔG—Gibbs free energy.
    下载: 导出CSV
  • [1] LI Y X, HAN Y C, WANG C C. Fabrication strategies and Cr(VI) elimination activities of the MOF-derivatives and their composites[J]. Chemical Engineering Journal,2021,405:126648. doi: 10.1016/j.cej.2020.126648
    [2] 闫潇, 刘兴宇, 张明江, 等. 铬污染的微生物吸附技术研究进展[J]. 稀有金属, 2021, 45(2):240-250.

    YAN Xiao, LIU Xingyu, ZHANG Mingjiang, et al. Research progress in biosorption technology for chromium contamination[J]. Chinese Journal of Raremetals,2021,45(2):240-250(in Chinese).
    [3] 狄婧, 刘海霞, 姜永强, 等. 聚吡咯/壳聚糖复合膜的制备及其对Cu(Ⅱ)和Cr(Ⅵ)吸附机制[J]. 复合材料学报, 2021, 38(1):221-231.

    DI Jing, LIU Haixia, JIANG Yongqiang, et al. Preparation of polypyrrole/chitosan composite membrane and its adsorption mechanism for Cu(Ⅱ) and Cr(Ⅵ)[J]. Acta Materiae Compositae Sinica,2021,38(1):221-231(in Chinese).
    [4] LIU L H, LIU X, WANG D Q, et al. Removal and reduction of Cr(Ⅵ) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge[J]. Journal of Cleaner Production,2020,257:120562. doi: 10.1016/j.jclepro.2020.120562
    [5] 于艳杰, 吴莹, 方登志, 等. 曝气微电解混凝沉淀处理含砷铬废水[J]. 工业水处理, 2018, 38(2):82-84. doi: 10.11894/1005-829x.2018.38(2).082

    YU Yanjie, WU Ying, FANG Dengzhi, et al. Treatment of wastewater containing arsenic and chrome by aeration micro-electrolysis and coagulation-settlement process[J]. Industrial Water Treatment,2018,38(2):82-84(in Chinese). doi: 10.11894/1005-829x.2018.38(2).082
    [6] WU Z, YUAN X, ZENG G, et al. Highly effcient photocatalytic activity and mechanism of Yb3+/Tm3+ codoped In2S3 from ultraviolet to near infrared light towards chromium(VI) reduction and Rhodamine B oxydative degradation[J]. Applied Catalysis B,2020,225:8-21.
    [7] YAO Y, MI N, HE C, et al. Humic acid modified nano-ferrous sulfide enhances the removal efficiency of Cr(VI)[J]. Separation and Purification Technology,2020,240:116623. doi: 10.1016/j.seppur.2020.116623
    [8] 张华夏, 石林. 羧甲基纤维素钠稳定纳米硫化亚铁吸附砷研究[J]. 水处理技术, 2019, 45(4):37-42.

    ZHANG Huaxia, SHI Lin. Study on adsorption of arsenic on carboxymethylcellulose sodium stabilized ferrous sulfide nanoparticles[J]. Technology of Water Treatment,2019,45(4):37-42(in Chinese).
    [9] WU J, ZENG R J. In situ preparation of stabilized iron sulfide nanoparticle-impregnated alginate composite for selenite remedition[J]. Environmental Science and Technology,2018(52):6487-6496.
    [10] LYU H, TANG J, YAO H, et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite[J]. Chemical Engineering Journal,2017,322:516-524. doi: 10.1016/j.cej.2017.04.058
    [11] 黄冠华, 刘序彦, 房晨曦, 等. 生物模板法制备磁性中空微球的方法和应用[J]. 化工进展, 2021, 40(5):2613-2623.

    HUANG Guanhua, LIU Xuyan, FANG Chenxi, et al. Methods and application of magnetic hollow microsphere prepared from bio-template[J]. Chemical Industry and Engi-neering Progress,2021,40(5):2613-2623(in Chinese).
    [12] 毕磊, 潘纲. 微生物自模板法制备多孔中空微球及应用[J]. 科学通报, 2014, 59(25):2440-2451. doi: 10.1360/972014-00173

    BI Lei, PAN Gang. Preparation and application of hollow microspheres with porous shell via microorganism self-template method[J]. Chinese Science Bulletin,2014,59(25):2440-2451(in Chinese). doi: 10.1360/972014-00173
    [13] 张竞. 以花粉为模板的锂空气电池多孔碳电极的制备及其性能研究[D]. 昆明: 昆明理工大学, 2016.

    ZHANG Jing. Preparation and performance of porous carbon electrode for Li-air battery using pollen as template[D]. Kunming: Kunming University of Science and Technology, 2016(in Chinese).
    [14] 高雪, 刘宇彤, 王煜, 等. 生物模板法制备纳米氧化锌[J]. 化学通报, 2019, 82(1):63-67.

    GAO Xue, LIU Yutong, WANG Yu, et al. Preparation of zinc oxide nanomaterial by biotemplated method[J]. Che-mistry,2019,82(1):63-67(in Chinese).
    [15] 段胜聪, 孟自珍, 解晶, 等. 基于油菜花粉模板制备ZnAlCe三元复合氧化物多孔材料及其催化性能研究[J]. 无机材料学报, 2015, 30(4):421-426.

    DUAN Shengcong, MENG Zizhen, XIE Jing, et al. Preparation and catalytic property of ZnAlCe ternary complex oxide porous materials based on rape pollen biotemplates[J]. Journal of Inorganic Materials,2015,30(4):421-426(in Chinese).
    [16] 国家环境保护局规划标准处. 水质 六价铬的测定 二苯碳酰二肼分光光度法: GB/T 7467—1987[S]. 北京: 中国标准出版社, 1987.

    State Environmental Protection Agency. Water quality-Determination of hexavalent chromium diphenylcarbonyl hydrazine spectrophotometric method: GB/T 7467—1987[S]. Beijing: Standards Press of China,1987.
    [17] ZHANG H, LIANG P, CHEN A W, et al. Chitosan-stabilized FeS magnetic composites for chromium removal: Characterization, performance, mechanism, and stability[J]. Carbohydrate Polymers,2019,214:276-285. doi: 10.1016/j.carbpol.2019.03.056
    [18] DIPTIMA D, SHYAMAL K S. Sulfuric acid doped poly diaminopyridine/graphene composite to remove high concentration of toxic Cr(VI)[J]. Journal of Hazardous Materials,2015,291:93-101. doi: 10.1016/j.jhazmat.2015.02.065
    [19] DI IORIO E, COLOMBO C, CHENG Z Q, et al. Characterization of magnetite nanoparticles synthetized from Fe(II)/nitrate solutions for arsenic removal from water[J]. Journal of Enviromental Chemical Engineering,2019,7(2):102986. doi: 10.1016/j.jece.2019.102986
    [20] LIANG Q, GENG J, LUO H, et al. Fast and selective removal of Cr(VI) from aqueous solutions by a novel magnetic Cr(VI) ion-imprinted polymer[J]. Journal of Molecular Liquids,2017,248:767-774. doi: 10.1016/j.molliq.2017.10.114
    [21] ZHANG L, FU F L, TANG B. Adsorption and redox conversion behaviors of Cr(VI) on goethite/carbon microspheres and akaganeite/carbon microspheres composites[J]. Chemical Engineering Journal,2019,356:151-160. doi: 10.1016/j.cej.2018.08.224
    [22] 郭成, 郝军杰, 李明阳, 等. 海藻酸钠/聚乙烯亚胺凝胶球的合成及对Cr(VI)的吸附性能和机制[J]. 复合材料学报, 2021, 38(7):2140-2151.

    GUO Cheng, HAO Junjie, LI Mingyang, et al. Adsorption of Cr(Ⅵ) on porous sodium alginate/polyethyleneimine hydrogel beads and its mechanistic study[J]. Acta Materiae Compositae Sinica,2021,38(7):2140-2151(in Chinese).
    [23] SUN Z, LIU Y, HUANG Y, et al. Fast adsorption of Cd2+ and Pb2+ by EGTA dianhydride (EGTAD) modified ramie fiber[J]. Journal of Colloid and Interface Science,2014,434:152-158. doi: 10.1016/j.jcis.2014.07.036
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  629
  • HTML全文浏览量:  204
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12
  • 修回日期:  2022-03-21
  • 录用日期:  2022-03-26
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回