Deformation control in shape machining of CFRP flexible parts
-
摘要: 碳纤维增强树脂基复合材料(CFRP)柔性件的保形加工是航空航天高端装备制造的重要环节,柔性件的可靠装夹是控制加工变形、降低加工尺寸偏差的前提。首先,在理论分析的基础上,明确了柔性件装夹中夹紧及摩擦约束基本条件,提出了基于悬臂梁理论的“随形-就近”吸盘分布原则。进而,使用“ISIGHT-ABAQUS”联合仿真方法,实现了不同装夹条件及等效切削力作用下CFRP柔性件变形的仿真分析,分析表明:真空吸盘的弹性变形易加大装夹变形,应采用弹性真空吸盘与刚性定位吸盘组合的方式;定位吸盘数量为8、12或16,并“随形-就近”分布时,真空吸盘数量及分布对柔性件变形的影响可忽略。最后,仿真与实验分析了考虑定位几何量偏差时的加工尺寸偏差,仿真与实验结果规律基本一致,优化装夹后的加工尺寸偏差最大降幅达57.7 μm (35%);综上,CFRP柔性件保形加工中变形引起的加工尺寸偏差不容忽略,在“随形-就近”、“定位与真空吸盘组合”原则下优化装夹可以大幅降低变形引起的尺寸偏差。
-
关键词:
- 碳纤维增强树脂基复合材料柔性件 /
- 保形加工 /
- 装夹 /
- 变形 /
- 尺寸偏差
Abstract: The shape machining of carbon fiber reinforced polymer (CFRP) flexible parts is an important process in manufacturing of high-end aerospace equipment. Reliable clamping of the flexible parts is a prerequisite to control the deformation and reduce the dimensional deviation in machining. Firstly, the basic conditions for clamping and friction constraint by theory analysis were given, and a principle of “Following the shape and near the point” for the sucker distribution based on the cantilever beam theory was proposed. Furthermore, based on the “ISIGHT-ABAQUS” co-simulation method, the simulation analysis of the deformation of the CFRP flexible part were taken under different clamping conditions. The research shows that the elastic deformation of the vacuum sucker is easy to increase the clamping deformation, and the combination of the vacuum and positioning suckers should be used. When the numbers of the positioning suckers are 8, 12, or 16, and are distributed according to the principle of “Following the shape and near the point”, the influence of the distribution of the vacuum sucker on the deformation of the flexible part is negligible. Finally, the machining size deviation when considering the positioning geometric deviation was analyzed by the simulation and experiment. The trends in simulation and experiment are consistent with each other, and after the clamping optimization the dimension deviation can be reduced by 57.7 μm (35%). In summary, the machining dimension deviation caused by the deformation in shape machining of CFRP flexible parts cannot be ignored, and then the clamping optimization under the proposed principles of “Following the shape and near the point” and “Combining of positioning and vacuum suckers” can greatly reduce the dimension deviation caused by the deformation.-
Key words:
- CFRP flexible part /
- shape machining /
- clamping /
- deformation /
- dimensional deviation
-
图 1 碳纤维增强树脂基复合材料(CFRP)柔性件约束平衡示意图
R1—Reaction force of positioning sucker somewhere; P1—Clamping force of vacuum sucker somewhere; Fx—Tangential force; Fy—Radial force; Fz—Axial force; Ff—Friction; Fc—Milling force; G—Gravity of flexible parts
Figure 1. Balance schematic diagram of carbon fiber reinforced polymer (CFRP) flexible part
图 13 实验装置装配尺寸链
1—Leveling base; 2—Bottom support profiles; 3—Connecting frame profiles; 4—Connection profiles for suckers; 5—Adapters; 6—Sucker assembly; 7—CFRP laminates; A1—Overall height of the experimental setup; A2—Installation height of leveling base; A3—Installation height of the bottom support profile; A4—Height of the bottom support profile installation position to the upper surface of the connecting frame profile; A5—Installation height of connection profiles for sucker; A6—Adaptor installation height; A7—Sucker assembly installation height; δ—Cumulative error
Figure 13. Assembly dimensional chain of experimental system
表 1 T300/7901 CFRP[25]及丁腈橡胶(NBR) [26]的材料参数
Table 1. Material property of T300/7901 CFRP [25] and nitrile rubber (NBR)[26]
CFRP property Value CFRP property Value NBR property Value E11/MPa 125000 G23/MPa 3980 C10 2.767 E22/MPa 11300 v12 0.30 C01 1.439 E33/MPa 11300 v13 0.30 D1 0.014 G12/MPa 5430 v23 0.42 G13/MPa 5430 ρ/(g·cm−3) 1.7 Notes: E—Elastic modulus; G—Shear modulus; v—Poisson's ratio; 1—Direction of fiber; 2—Direction of matrix; 3—Thickness direction of layer; C10, C01, D1—Rivlin coefficient; ρ—Density. 表 2 实验设计参数
Table 2. Parameters of experimental design
Factor Level Number of positioning suckers 4 8 12 16 Number of vacuum suckers 4 8 Position distribution of positioning suckers Following the shape and near the point Position distribution of vacuum suckers Random distribution 表 3 采用理想工装时等效静态力作用下的CFRP柔性件位移及标准偏差
Table 3. Displacement and standard deviation of CFRP flexible parts under static force by ideal tooling
Number of positioning suckers Number of vacuum suckers Maximum displacement/μm Standard deviation Minimum displacement/μm Standard deviation 4 4 22.430 0.8654 19.240 0.8654 4 8 20.410 0.5899 18.550 0.5899 8 4 14.210 0.2146 13.740 0.2146 8 8 13.950 0.1978 13.590 0.1978 12 4 9.880 0.0036 9.872 0.0036 12 8 9.872 0.0010 9.870 0.0010 16 4 6.650 0.0000 6.650 0.0000 16 8 6.650 0.0000 6.650 0.0000 表 4 实验系统内的尺寸偏差
Table 4. Dimensional deviation in the experimental system
Deviation type Deviation Misalignment deviation of part 1 (δ1) — Manufacturing deviation of part 2 (δ2) ±0.3 mm Manufacturing deviation of part 3 (δ3) ±0.3 mm Positioning deviation of the device (δ4) — Manufacturing deviation of part 4 (δ5) ±0.3 mm Manufacturing deviation of part 5 (δ6) ±0.2 mm Deviation caused by clamping force (δ7) — Deviation caused by measuring
instruments and methods (δ8)— Total deviation (δ∑) — -
[1] 王运巧, 梅中义, 范玉青. 薄壁弧形件装夹布局有限元优化[J]. 机械工程学报, 2005, 41(6):214-217. doi: 10.3321/j.issn:0577-6686.2005.06.041WANG Yunqiao, MEI Zhongyi, FAN Yuqing. Clamping of thin-walled curved parts layout finite element optimization[J]. Journal of Mechanical Engineering,2005,41(6):214-217(in Chinese). doi: 10.3321/j.issn:0577-6686.2005.06.041 [2] WU N H, CHAN K C, LEONG S S. Static interactions of surface contacts in a fixture-workpiece system[J]. International Journal of Computer Applications in Technology,1997,10(3/4):133-151. [3] KAYA N. Machining fixture locating and clamping position optimization using genetic algorithms[J]. Computers in Industry,2006,57(2):112-120. doi: 10.1016/j.compind.2005.05.001 [4] CAMELIO J A, JACK HU S, CEGLAREK D. Impact of fixture design on sheet metal assembly variation[J]. Journal of Manufacturing Systems,2007 , 23 (3):182-193. [5] VAZ M, OWEN D R J, KALHORI V, et al. Modelling and simulation of machining processes[J]. Archives of Computational Methods in Engineering: State of the Art Reviews,2007,14(2):173-204. doi: 10.1007/s11831-007-9005-7 [6] HAN B, REN C Z, YANG X Y, et al. Experiment study on deflection of alloy thin-wall workpiece in milling process[J]. Materials Science Forum,2012,697:129-132. [7] 董辉跃, 柯映林. 铣削加工中柔性件装夹方案优选的有限元模拟[J]. 浙江大学学报工学版, 2004, 38(1):17-21.DONG Huiyue, KE Yinglin. Finite element simulation of optimal clamping scheme for thin-walled parts in milling[J]. Journal of Zhejiang University Engineering Science,2004,38(1):17-21(in Chinese). [8] 秦国华, 张卫红, 吴竹溪, 等. 多重夹紧力及其作用顺序对工件变形的影响分析与优化技术[J]. 工程力学, 2006, 23(S1):229-235.QIN Guohua, ZHANG Weihong, WU Zhuxi, et al. Analysis and optimization technology of the influence of multiple clamping forces and their action sequence on the deformation of workpiece[J]. Engineering Mechanics,2006,23(S1):229-235(in Chinese). [9] 周孝伦, 张卫红, 秦国华, 等. 基于遗传算法的夹具布局和夹紧力同步优化[J]. 机械科学与技术, 2005(3):339-342. doi: 10.3321/j.issn:1003-8728.2005.03.025ZHOU Xiaolun, ZHANG Weihong, QIN Guohua, et al. Synchronous optimization of fixture layout and clamping force based on genetic algorithm[J]. Mechanical Science and Technology,2005(3):339-342(in Chinese). doi: 10.3321/j.issn:1003-8728.2005.03.025 [10] GUO H, ZUO D W, WANG S H, et al. Effect of tool path on milling accuracy under given clamp[J]. Transactions of Nanjing University of Aeronautics & Astronautics,2005(3):234-239. [11] 陈蔚芳, 倪丽君, 王宁生. 夹具布局和夹紧力的优化方法研究[J]. 中国机械工程, 2007(12):1413-1417. doi: 10.3321/j.issn:1004-132X.2007.12.007CHEN Weifang, NI Lijun, WANG Ningsheng. Research on optimization method of fixture layout and clamping force[J]. China Mechanical Engineering,2007(12):1413-1417(in Chinese). doi: 10.3321/j.issn:1004-132X.2007.12.007 [12] 倪丽君. 计算机辅助夹具设计中的装夹优化技术研究[D]. 南京: 南京航空航天大学, 2007.NI Lijun. Research on clamping optimization technology in computer aided fixture design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese). [13] 路冬. 航空整体结构件加工变形预测及装夹布局优化[D]. 济南: 山东大学, 2007.LU Dong. Processing deformation prediction and clamping layout optimization of aviation monolithic structure parts[D]. Jinan: Shandong University, 2007(in Chinese). [14] LIU S G, ZHENG L, ZHANG Z H, et al. Optimization of the number and positions of fixture locators in the peripheral milling of a low-rigidity workpiece[J]. The International Journal of Advanced Manufacturing Technology,2007,33(7):668-676. [15] 袁俊凇. 复杂薄壁结构件铣削加工变形有限元模拟及装夹布局优选[D]. 上海: 上海交通大学, 2011.YUAN Junsong. Finite element simulation of milling deformation and clamping layout optimization of complex thin-walled structure parts[D]. Shanghai: Shanghai Jiao Tong University, 2011(in Chinese). [16] 王沙沙. 框类柔性件装夹和切削参数的同步优化[D]. 大连: 大连理工大学, 2012.WANG Shasha. Synchronous optimization of clamping and cutting parameters of frame-type thin-walled parts[D]. Dalian: Dalian University of Technology, 2012(in Chinese). [17] HU F W. Location issues of thin shell parts in the reconfigurable fixture for trimming operation[J]. Journal of Aerospace Technology and Management,2014,3:319-331. [18] 赵旭亮. 柔性件装夹变形预测及装夹布局优化方法[D]. 南昌: 南昌航空大学, 2014.ZHAO Xuliang. Clamping deformation prediction and clamping layout optimization method of thin-walled parts[D]. Nanchang: Nanchang Hangkong University, 2014(in Chinese). [19] 杨元, 王仲奇, 杨勃, 等. 基于SVR的航空柔性件夹具布局优化预测模型[J]. 计算机集成制造系统, 2017, 23(6):1302-1309.YANG Yuan, WANG Zhongqi, YANG Bo, et al. Optimization prediction model of fixture layout for aviation thin-walled parts based on SVR[J]. Computer Integrated Manufacturing Systems,2017,23(6):1302-1309(in Chinese). [20] MATRAS A, PLAZA M. The FEM simulation of the thin walled aircraft engine corpus deformation during milling[J]. Materials Science , 2016 , 10031: 100310B-1. [21] 秦旭达, 朱圣富, 李士鹏, 等. 不同纤维方向角时碳纤维增强树脂基复合材料切削力建模[J]. 宇航材料工艺, 2020, 50(6):31-40.QIN Xuda, ZHU Shengfu, LI Shipeng, et al. Modeling of cutting force of carbon fiber reinforced resin matrix compo-sites with different fiber orientation angle[J]. Aerospace Materials Technology,2020,50(6):31-40(in Chinese). [22] 贾振元, 宿友亮, 张博宇, 等. 基于径向基函数神经网络的CFRP切削力预测[J]. 复合材料学报, 2016, 33(3):516-524.JIA Zhenyuan, SU Youliang, ZHANG Boyu, et al. Prediction of cutting force in CFRP based on radial basis function neural network[J]. Acta Materialia Compositae Sinica,2016,33(3):516-524(in Chinese). [23] STEFAN K, LEPOLD A, ZANGER F, et al. Experimental investigation of clamping systems and the resulting change of cutting conditions while drilling carbon fiber reinforced plastics[J]. Procedia CIRP,2017,62:15-20. doi: 10.1016/j.procir.2016.06.089 [24] GIBSON R F. Principles of composite material mechanics[M]. 4th Edition. UK: Taylor and Francis, 2016. [25] 毛振刚, 侯玉亮, 李成, 等. 搭接长度和铺层方式对CFRP复合材料层合板胶接结构连接性能和损伤行为的影响[J]. 复合材料学报, 2020, 37(1):121-131.MAO Zhengang, HOU Yuliang, LI Cheng, et al. Effect of length and layout pattern on bonding properties and damage behavior of CFRP composite laminates[J]. Acta Materialia Compositae Sinica,2020,37(1):121-131(in Chinese). [26] 赵小龙, 刁晓勇, 姜国良, 等. 氢化丁腈橡胶本构模型参数确定方法[J]. 合成橡胶工业, 2019, 42(5):352-356. doi: 10.3969/j.issn.1000-1255.2019.05.005ZHAO Xiaolong, DIAO Xiaoyong, JIANG Guoliang, et al. Determination of constitutive model parameters of hydrogenated nitrile rubber[J]. Rubber Industry,2019,42(5):352-356(in Chinese). doi: 10.3969/j.issn.1000-1255.2019.05.005