留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP柔性件保形加工中的变形控制

宿友亮 黎游 孟志坚 王清彬 郜雪楠 胡建

宿友亮, 黎游, 孟志坚, 等. CFRP柔性件保形加工中的变形控制[J]. 复合材料学报, 2023, 40(2): 1179-1189. doi: 10.13801/j.cnki.fhclxb.20220322.002
引用本文: 宿友亮, 黎游, 孟志坚, 等. CFRP柔性件保形加工中的变形控制[J]. 复合材料学报, 2023, 40(2): 1179-1189. doi: 10.13801/j.cnki.fhclxb.20220322.002
SU Youliang, LI You, MENG Zhijian, et al. Deformation control in shape machining of CFRP flexible parts[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1179-1189. doi: 10.13801/j.cnki.fhclxb.20220322.002
Citation: SU Youliang, LI You, MENG Zhijian, et al. Deformation control in shape machining of CFRP flexible parts[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1179-1189. doi: 10.13801/j.cnki.fhclxb.20220322.002

CFRP柔性件保形加工中的变形控制

doi: 10.13801/j.cnki.fhclxb.20220322.002
基金项目: 国家自然科学基金(51865048);机械系统与振动国家重点实验室课题(MSV202212)
详细信息
    通讯作者:

    宿友亮,博士,副教授,硕士生导师,研究方向为先进制造技术 E-mail: suyl@nxu.edu.cn

  • 中图分类号: TH161;TQ327.3

Deformation control in shape machining of CFRP flexible parts

Funds: National Natural Science Foundation of China (51865048); Research Project of State Key Laboratory of Mechanical System and Vibration (MSV202212)
  • 摘要: 碳纤维增强树脂基复合材料(CFRP)柔性件的保形加工是航空航天高端装备制造的重要环节,柔性件的可靠装夹是控制加工变形、降低加工尺寸偏差的前提。首先,在理论分析的基础上,明确了柔性件装夹中夹紧及摩擦约束基本条件,提出了基于悬臂梁理论的“随形-就近”吸盘分布原则。进而,使用“ISIGHT-ABAQUS”联合仿真方法,实现了不同装夹条件及等效切削力作用下CFRP柔性件变形的仿真分析,分析表明:真空吸盘的弹性变形易加大装夹变形,应采用弹性真空吸盘与刚性定位吸盘组合的方式;定位吸盘数量为8、12或16,并“随形-就近”分布时,真空吸盘数量及分布对柔性件变形的影响可忽略。最后,仿真与实验分析了考虑定位几何量偏差时的加工尺寸偏差,仿真与实验结果规律基本一致,优化装夹后的加工尺寸偏差最大降幅达57.7 μm (35%);综上,CFRP柔性件保形加工中变形引起的加工尺寸偏差不容忽略,在“随形-就近”、“定位与真空吸盘组合”原则下优化装夹可以大幅降低变形引起的尺寸偏差。

     

  • 图  1  碳纤维增强树脂基复合材料(CFRP)柔性件约束平衡示意图

    R1—Reaction force of positioning sucker somewhere; P1—Clamping force of vacuum sucker somewhere; Fx—Tangential force; Fy—Radial force; Fz—Axial force; Ff—Friction; Fc—Milling force; G—Gravity of flexible parts

    Figure  1.  Balance schematic diagram of carbon fiber reinforced polymer (CFRP) flexible part

    图  2  CFRP层合板铣削示意图

    Figure  2.  Schematic diagram of milling CFRP laminates

    图  3  复合材料层合梁示意图

    L—Length of cantilever beam; B—Cross-sectional width; H—Cross-sectional height; G—Milling force; N—Number of composite laminate layers

    Figure  3.  Schematic diagram of composite laminates beam

    图  4  不同悬臂长度下的复合材料层合梁最大挠度

    Figure  4.  Maximum deflection of the composite laminated beam under different cantilever length

    图  5  CFRP柔性件装夹仿真模型

    F—Equivalent static force

    Figure  5.  Simulation model of clamping CFRP flexible part

    图  6  不同网格尺寸下的CFRP柔性件最大位移

    Figure  6.  Maximum displacement of CFRP flexible parts with different mesh size

    图  7  相邻网格尺寸间CFRP柔性件最大位移的差值率

    Figure  7.  Displacement difference rate of CFRP flexible parts between the adjacent mesh size

    图  8  真空和定位吸盘装夹时CFRP柔性件位移云图

    U—Displacement

    Figure  8.  Displacement nephogram of clamping CFRP flexible parts by vacuum and positioning sucker

    图  9  吸盘随机分布下的CFRP柔性件最大位移

    Figure  9.  Maximum displacement of CFRP flexible parts under random distribution of suckers

    g, r—Positioning sucker and vacuum sucker respectively in the figure

    图  10  联合仿真实验流程

    SLDPRT file—Solidwords software file formats; IGS file—Abaqus software readable 3D model file format; INP file, ODB file—Abaqus software output file format; DOE—Design of experiments

    Figure  10.  Collaborative simulation experiments

    图  11  CFRP柔性件变形测量实验系统

    Figure  11.  Experiment system of deformation measurement for CFRP flexible part

    图  12  CRFP柔性件的三维扫描点云图

    Figure  12.  Point cloud of CFRP flexible part by 3D scanning

    图  13  实验装置装配尺寸链

    1—Leveling base; 2—Bottom support profiles; 3—Connecting frame profiles; 4—Connection profiles for suckers; 5—Adapters; 6—Sucker assembly; 7—CFRP laminates; A1—Overall height of the experimental setup; A2—Installation height of leveling base; A3—Installation height of the bottom support profile; A4—Height of the bottom support profile installation position to the upper surface of the connecting frame profile; A5—Installation height of connection profiles for sucker; A6—Adaptor installation height; A7—Sucker assembly installation height; δ—Cumulative error

    Figure  13.  Assembly dimensional chain of experimental system

    图  14  定位件的三维扫描点云图

    Figure  14.  Point cloud of positioning suckers by 3D scanning

    图  15  定位吸盘的相对高度

    Figure  15.  Relative height of positioning suckers

    图  16  CFRP柔性件尺寸偏差示意

    Figure  16.  Dimensional deviation of CFRP flexible part

    图  17  自由状态下CFRP柔性件变形云图

    Figure  17.  Deformation nephogram of CFRP flexible parts under free state condition

    图  18  理想工装下CFRP柔性件位移云图

    Figure  18.  Displacement nephogram of CFRP flexible parts under ideal tooling

    图  19  不同工装条件下CFRP柔性件最大位移变化

    Figure  19.  Maximum displacement variation of CFRP flexible parts under different tooling conditions

    图  20  考虑定位几何量偏差时等效静态力作用下CFRP柔性件的位移云图

    Figure  20.  Displacement nephogram of the CFRP flexible parts under the static force considering the location geometry deviation

    图  21  不同装夹方案下CFRP柔性件的最大位移

    Figure  21.  Maximum displacement of CFRP flexible parts by different clamping conditions

    图  22  不同装夹方案下加工后CFRP柔性件的尺寸偏差

    Figure  22.  Dimensional deviation of the machined CFRP flexible parts by different clamping conditions

    表  1  T300/7901 CFRP[25]及丁腈橡胶(NBR) [26]的材料参数

    Table  1.   Material property of T300/7901 CFRP [25] and nitrile rubber (NBR)[26]

    CFRP propertyValueCFRP propertyValueNBR propertyValue
    E11/MPa 125000 G23/MPa 3980 C10 2.767
    E22/MPa 11300 v12 0.30 C01 1.439
    E33/MPa 11300 v13 0.30 D1 0.014
    G12/MPa 5430 v23 0.42
    G13/MPa 5430 ρ/(g·cm−3) 1.7
    Notes: E—Elastic modulus; G—Shear modulus; v—Poisson's ratio; 1—Direction of fiber; 2—Direction of matrix; 3—Thickness direction of layer; C10, C01, D1—Rivlin coefficient; ρ—Density.
    下载: 导出CSV

    表  2  实验设计参数

    Table  2.   Parameters of experimental design

    FactorLevel
    Number of positioning suckers481216
    Number of vacuum suckers48
    Position distribution of positioning suckersFollowing the shape and near the point
    Position distribution of vacuum suckersRandom distribution
    下载: 导出CSV

    表  3  采用理想工装时等效静态力作用下的CFRP柔性件位移及标准偏差

    Table  3.   Displacement and standard deviation of CFRP flexible parts under static force by ideal tooling

    Number of positioning suckersNumber of vacuum suckersMaximum displacement/μmStandard deviationMinimum displacement/μmStandard deviation
    4 4 22.430 0.8654 19.240 0.8654
    4 8 20.410 0.5899 18.550 0.5899
    8 4 14.210 0.2146 13.740 0.2146
    8 8 13.950 0.1978 13.590 0.1978
    12 4 9.880 0.0036 9.872 0.0036
    12 8 9.872 0.0010 9.870 0.0010
    16 4 6.650 0.0000 6.650 0.0000
    16 8 6.650 0.0000 6.650 0.0000
    下载: 导出CSV

    表  4  实验系统内的尺寸偏差

    Table  4.   Dimensional deviation in the experimental system

    Deviation typeDeviation
    Misalignment deviation of part 1 (δ1)
    Manufacturing deviation of part 2 (δ2)±0.3 mm
    Manufacturing deviation of part 3 (δ3)±0.3 mm
    Positioning deviation of the device (δ4)
    Manufacturing deviation of part 4 (δ5)±0.3 mm
    Manufacturing deviation of part 5 (δ6)±0.2 mm
    Deviation caused by clamping force (δ7)
    Deviation caused by measuring
    instruments and methods (δ8)
    Total deviation (δ∑)
    下载: 导出CSV
  • [1] 王运巧, 梅中义, 范玉青. 薄壁弧形件装夹布局有限元优化[J]. 机械工程学报, 2005, 41(6):214-217. doi: 10.3321/j.issn:0577-6686.2005.06.041

    WANG Yunqiao, MEI Zhongyi, FAN Yuqing. Clamping of thin-walled curved parts layout finite element optimization[J]. Journal of Mechanical Engineering,2005,41(6):214-217(in Chinese). doi: 10.3321/j.issn:0577-6686.2005.06.041
    [2] WU N H, CHAN K C, LEONG S S. Static interactions of surface contacts in a fixture-workpiece system[J]. International Journal of Computer Applications in Technology,1997,10(3/4):133-151.
    [3] KAYA N. Machining fixture locating and clamping position optimization using genetic algorithms[J]. Computers in Industry,2006,57(2):112-120. doi: 10.1016/j.compind.2005.05.001
    [4] CAMELIO J A, JACK HU S, CEGLAREK D. Impact of fixture design on sheet metal assembly variation[J]. Journal of Manufacturing Systems,2007 , 23 (3):182-193.
    [5] VAZ M, OWEN D R J, KALHORI V, et al. Modelling and simulation of machining processes[J]. Archives of Computational Methods in Engineering: State of the Art Reviews,2007,14(2):173-204. doi: 10.1007/s11831-007-9005-7
    [6] HAN B, REN C Z, YANG X Y, et al. Experiment study on deflection of alloy thin-wall workpiece in milling process[J]. Materials Science Forum,2012,697:129-132.
    [7] 董辉跃, 柯映林. 铣削加工中柔性件装夹方案优选的有限元模拟[J]. 浙江大学学报工学版, 2004, 38(1):17-21.

    DONG Huiyue, KE Yinglin. Finite element simulation of optimal clamping scheme for thin-walled parts in milling[J]. Journal of Zhejiang University Engineering Science,2004,38(1):17-21(in Chinese).
    [8] 秦国华, 张卫红, 吴竹溪, 等. 多重夹紧力及其作用顺序对工件变形的影响分析与优化技术[J]. 工程力学, 2006, 23(S1):229-235.

    QIN Guohua, ZHANG Weihong, WU Zhuxi, et al. Analysis and optimization technology of the influence of multiple clamping forces and their action sequence on the deformation of workpiece[J]. Engineering Mechanics,2006,23(S1):229-235(in Chinese).
    [9] 周孝伦, 张卫红, 秦国华, 等. 基于遗传算法的夹具布局和夹紧力同步优化[J]. 机械科学与技术, 2005(3):339-342. doi: 10.3321/j.issn:1003-8728.2005.03.025

    ZHOU Xiaolun, ZHANG Weihong, QIN Guohua, et al. Synchronous optimization of fixture layout and clamping force based on genetic algorithm[J]. Mechanical Science and Technology,2005(3):339-342(in Chinese). doi: 10.3321/j.issn:1003-8728.2005.03.025
    [10] GUO H, ZUO D W, WANG S H, et al. Effect of tool path on milling accuracy under given clamp[J]. Transactions of Nanjing University of Aeronautics & Astronautics,2005(3):234-239.
    [11] 陈蔚芳, 倪丽君, 王宁生. 夹具布局和夹紧力的优化方法研究[J]. 中国机械工程, 2007(12):1413-1417. doi: 10.3321/j.issn:1004-132X.2007.12.007

    CHEN Weifang, NI Lijun, WANG Ningsheng. Research on optimization method of fixture layout and clamping force[J]. China Mechanical Engineering,2007(12):1413-1417(in Chinese). doi: 10.3321/j.issn:1004-132X.2007.12.007
    [12] 倪丽君. 计算机辅助夹具设计中的装夹优化技术研究[D]. 南京: 南京航空航天大学, 2007.

    NI Lijun. Research on clamping optimization technology in computer aided fixture design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).
    [13] 路冬. 航空整体结构件加工变形预测及装夹布局优化[D]. 济南: 山东大学, 2007.

    LU Dong. Processing deformation prediction and clamping layout optimization of aviation monolithic structure parts[D]. Jinan: Shandong University, 2007(in Chinese).
    [14] LIU S G, ZHENG L, ZHANG Z H, et al. Optimization of the number and positions of fixture locators in the peripheral milling of a low-rigidity workpiece[J]. The International Journal of Advanced Manufacturing Technology,2007,33(7):668-676.
    [15] 袁俊凇. 复杂薄壁结构件铣削加工变形有限元模拟及装夹布局优选[D]. 上海: 上海交通大学, 2011.

    YUAN Junsong. Finite element simulation of milling deformation and clamping layout optimization of complex thin-walled structure parts[D]. Shanghai: Shanghai Jiao Tong University, 2011(in Chinese).
    [16] 王沙沙. 框类柔性件装夹和切削参数的同步优化[D]. 大连: 大连理工大学, 2012.

    WANG Shasha. Synchronous optimization of clamping and cutting parameters of frame-type thin-walled parts[D]. Dalian: Dalian University of Technology, 2012(in Chinese).
    [17] HU F W. Location issues of thin shell parts in the reconfigurable fixture for trimming operation[J]. Journal of Aerospace Technology and Management,2014,3:319-331.
    [18] 赵旭亮. 柔性件装夹变形预测及装夹布局优化方法[D]. 南昌: 南昌航空大学, 2014.

    ZHAO Xuliang. Clamping deformation prediction and clamping layout optimization method of thin-walled parts[D]. Nanchang: Nanchang Hangkong University, 2014(in Chinese).
    [19] 杨元, 王仲奇, 杨勃, 等. 基于SVR的航空柔性件夹具布局优化预测模型[J]. 计算机集成制造系统, 2017, 23(6):1302-1309.

    YANG Yuan, WANG Zhongqi, YANG Bo, et al. Optimization prediction model of fixture layout for aviation thin-walled parts based on SVR[J]. Computer Integrated Manufacturing Systems,2017,23(6):1302-1309(in Chinese).
    [20] MATRAS A, PLAZA M. The FEM simulation of the thin walled aircraft engine corpus deformation during milling[J]. Materials Science , 2016 , 10031: 100310B-1.
    [21] 秦旭达, 朱圣富, 李士鹏, 等. 不同纤维方向角时碳纤维增强树脂基复合材料切削力建模[J]. 宇航材料工艺, 2020, 50(6):31-40.

    QIN Xuda, ZHU Shengfu, LI Shipeng, et al. Modeling of cutting force of carbon fiber reinforced resin matrix compo-sites with different fiber orientation angle[J]. Aerospace Materials Technology,2020,50(6):31-40(in Chinese).
    [22] 贾振元, 宿友亮, 张博宇, 等. 基于径向基函数神经网络的CFRP切削力预测[J]. 复合材料学报, 2016, 33(3):516-524.

    JIA Zhenyuan, SU Youliang, ZHANG Boyu, et al. Prediction of cutting force in CFRP based on radial basis function neural network[J]. Acta Materialia Compositae Sinica,2016,33(3):516-524(in Chinese).
    [23] STEFAN K, LEPOLD A, ZANGER F, et al. Experimental investigation of clamping systems and the resulting change of cutting conditions while drilling carbon fiber reinforced plastics[J]. Procedia CIRP,2017,62:15-20. doi: 10.1016/j.procir.2016.06.089
    [24] GIBSON R F. Principles of composite material mechanics[M]. 4th Edition. UK: Taylor and Francis, 2016.
    [25] 毛振刚, 侯玉亮, 李成, 等. 搭接长度和铺层方式对CFRP复合材料层合板胶接结构连接性能和损伤行为的影响[J]. 复合材料学报, 2020, 37(1):121-131.

    MAO Zhengang, HOU Yuliang, LI Cheng, et al. Effect of length and layout pattern on bonding properties and damage behavior of CFRP composite laminates[J]. Acta Materialia Compositae Sinica,2020,37(1):121-131(in Chinese).
    [26] 赵小龙, 刁晓勇, 姜国良, 等. 氢化丁腈橡胶本构模型参数确定方法[J]. 合成橡胶工业, 2019, 42(5):352-356. doi: 10.3969/j.issn.1000-1255.2019.05.005

    ZHAO Xiaolong, DIAO Xiaoyong, JIANG Guoliang, et al. Determination of constitutive model parameters of hydrogenated nitrile rubber[J]. Rubber Industry,2019,42(5):352-356(in Chinese). doi: 10.3969/j.issn.1000-1255.2019.05.005
  • 加载中
图(22) / 表(4)
计量
  • 文章访问数:  1028
  • HTML全文浏览量:  529
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-18
  • 修回日期:  2022-02-17
  • 录用日期:  2022-03-09
  • 网络出版日期:  2022-03-23
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回