留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型胶原-腐植酸钠复合水凝胶的研制与分析

田振华 何静瑄 王颖

田振华, 何静瑄, 王颖. 新型胶原-腐植酸钠复合水凝胶的研制与分析[J]. 复合材料学报, 2023, 40(2): 1050-1059. doi: 10.13801/j.cnki.fhclxb.20220321.005
引用本文: 田振华, 何静瑄, 王颖. 新型胶原-腐植酸钠复合水凝胶的研制与分析[J]. 复合材料学报, 2023, 40(2): 1050-1059. doi: 10.13801/j.cnki.fhclxb.20220321.005
TIAN Zhenhua, HE Jingxuan, WANG Ying. Development and analysis of a novel collagen-sodium humate composite hydrogel[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1050-1059. doi: 10.13801/j.cnki.fhclxb.20220321.005
Citation: TIAN Zhenhua, HE Jingxuan, WANG Ying. Development and analysis of a novel collagen-sodium humate composite hydrogel[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1050-1059. doi: 10.13801/j.cnki.fhclxb.20220321.005

新型胶原-腐植酸钠复合水凝胶的研制与分析

doi: 10.13801/j.cnki.fhclxb.20220321.005
基金项目: 陕西省自然科学基础研究计划项目(2019JQ-027);国家自然科学基金项目(21706151);陕西省教育厅专项科研计划项目(21JK0549)
详细信息
    通讯作者:

    田振华,博士,讲师,硕士生导师,研究方向为胶原基生物材料的设计 E-mail: tian_amb@163.com

  • 中图分类号: TB332

Development and analysis of a novel collagen-sodium humate composite hydrogel

Funds: Natural Science Foundation of Shaanxi Province (2019JQ-027); National Natural Science Foundation of China (21706151); Scientific Research Program Funded by Shaanxi Provincial Education Department (21JK0549)
  • 摘要: 水凝胶具有弹性高、含水量高,冷效应、保湿性强、形状多变等优点,是医用敷料的主要材料之一。将具有优良生物相容性、促细胞增殖功能的胶原(COL)与具有止血、消炎等作用的腐植酸钠(NaHA)按不同比例(COL∶NaHA)共混并采用自组装方式制备了一种新型胶原-腐植酸钠复合水凝胶,并考察两者间的相互作用及复合水凝胶的结构与性能,以期应用于医用敷料行业。NaHA不改变胶原的三股螺旋结构且两者之间存在氢键与静电作用。当COL∶NaHA ≥ 4∶6时,两者间的静电结合被NaCl所屏蔽,因此体系相容性较好;然而继续增加NaHA会引起聚沉现象。当COL∶NaHA=4∶6时,两者结合率最高,达到93.2%且相容性较好,复合水凝胶的纤维具有明显的D-周期且各方面性能最佳。NaHA的释放较缓慢,24 h后仍有约80%保留在水凝胶中;热稳定性较纯胶原提升了34.9℃;储能模量和损耗模量分别为31.89 Pa和3.99 Pa。此外,随着NaHA的加入,冻干复合水凝胶的孔径缩小、孔隙分布更加均匀;复合膜的亲水性明显提升。

     

  • 图  1  NaHA浓度与吸光度关系曲线

    R2—Coefficient of determination

    Figure  1.  Relationship curve of NaHA concentration and absorbance

    图  2  COL-NaHA复合水凝胶的外观图

    Figure  2.  Appearances of COL-NaHA composite hydrogels

    图  3  COL-NaHA复合水凝胶的电泳图

    Figure  3.  Electrophoretic pattern of COL-NaHA composite hydrogels

    图  4  COL-NaHA复合物的FITR图谱 (a) 和放大图谱 (b)

    a—COL; b—COL-NaHA-82; c—COL-NaHA-64; d—COL-NaHA-55; e—COL-NaHA-46; f—COL-NaHA-28; g—NaHA

    Figure  4.  FITR spectra (a) and enlarge spectra (b) of COL-NaHA composites

    图  5  COL-NaHA复合水凝胶的AFM图像(((a), (b)) COL; ((c), (d)) COL-NaHA-64; ((e), (f)) COL-NaHA-55; ((g), (h)) COL-NaHA-46)

    Figure  5.  AFM images of COL-NaHA composite hydrogels (((a), (b)) COL; ((c), (d)) COL-NaHA-64; ((e), (f)) COL-NaHA-55; ((g), (h)) COL-NaHA-46)

    图  6  离心后纤维中NaHA与胶原的结合率 (a) 及在PBS中浸泡若干天后纤维中NaHA的剩余结合率 (b)

    Figure  6.  Percentage of NaHA incorporated into collagen fibrils after centrifugation (a) and the retained percentage of NaHA after soaking in PBS solution for several days (b)

    图  7  复合水凝胶 (a) 和复合膜 (b) 中NaHA的释放率

    Figure  7.  Release ratios of NaHA in hydrogels (a) and films (b)

    图  8  COL-NaHA复合水凝胶的储能模量G' (a) 和损耗模量G" (b)

    Figure  8.  Storage modulus G' (a) and loss modulus G" (b) of COL-NaHA composite hydrogels

    图  9  COL-NaHA复合膜的水接触角

    Figure  9.  Water contact angle of COL-NaHA composite films

    图  10  冻干COL-NaHA复合水凝胶的DSC曲线

    Figure  10.  DSC thermograms of lyophilized COL-NaHA composite hydrogels

    图  11  冻干COL-NaHA复合水凝胶的SEM图像:(a) COL;(b) COL-NaHA-82;(c) COL-NaHA-64;(d) COL-NaHA-55;(e) COL-NaHA-46;(f) COL-NaHA-28

    Figure  11.  SEM images of lyophilized COL-NaHA composite hydrogels: (a) COL; (b) COL-NaHA-82; (c) COL-NaHA-64; (d) COL-NaHA-55; (e) COL-NaHA-46; (f) COL-NaHA-28

    表  1  胶原-腐植酸钠(COL-NaHA)复合水凝胶的制备配方

    Table  1.   Formulations of collagen-sodium humate (COL-NaHA) composite hydrogels

    SamplecCOL/
    (mg·mL−1)
    cNaHA/
    (mg·mL−1)
    COL∶NaHA
    COL 5.00 0.00 10∶0
    COL-NaHA-82 5.00 1.25 8∶2
    COL-NaHA-64 5.00 3.33 6∶4
    COL-NaHA-55 5.00 5.00 5∶5
    COL-NaHA-46 5.00 7.50 4∶6
    COL-NaHA-28 5.00 20.00 2∶8
    Note: cCOL and cNaHA—Concentrations of collagen and NaHA in COL-NaHA hydrogels, respectively.
    下载: 导出CSV
  • [1] LI S, WANG L, ZHENG W, et al. Rapid fabrication of self-healing, conductive, and injectable gel as dressings for healing wounds in stretchable parts of the body[J]. Advanced Functional Materials,2020,30(31):2002370. doi: 10.1002/adfm.202002370
    [2] MOHAMADI S, NOROOZNEZHAD A H, MOSTAFAEI S, et al. A randomized controlled trial of effectiveness of platelet-rich plasma gel and regular dressing on wound healing time in pilonidal sinus surgery: Role of different affecting factors[J]. Biomedical Journal,2019,42(6):403-410. doi: 10.1016/j.bj.2019.05.002
    [3] STEVENSON F J. Humus chemistry: Genesis, composition, reactions[M]. 2nd ed. New York: John Wiley & Sons, 1994.
    [4] 顾刚果, 耿宝琴, 雍定国. 黄腐植酸钠的抗凝作用[J]. 现代应用药学, 1988, 4(5):8, 41.

    GU Gangguo, GENG Baoqin, YONG Dingguo. Anticoagulant effect of sodium xanthate[J]. Application of Modern Medicine,1988,4(5):8, 41(in Chinese).
    [5] JI Y, ZHANG A, CHEN X, et al. Sodium humate accelerates cutaneous wound healing by activating TGF-beta/smads signaling pathway in rats[J]. Acta Pharmaceutica Sinica B,2016,6(2):132-140. doi: 10.1016/j.apsb.2016.01.009
    [6] 张爱军, 顾慧莹, 闫志勇, 等. 不同基质和pH值的腐植酸钠凝胶剂对大鼠皮肤创伤愈合的影响[J]. 中国药房, 2013, 21(24):1933-1935.

    ZHANG Aijun, GU Huiying, YAN Zhiyong, et al. Effect of sodium humic gel with different matrix and pH on wound healing of rats[J]. China Drug Store,2013,21(24):1933-1935(in Chinese).
    [7] 顾其胜, 王帅帅, 王庆生, 等. 海藻酸盐敷料应用现状与研究进展[J]. 中国修复重建外科杂志, 2014, 28(2):255-258. doi: 10.7507/1002-1892.20140055

    GU Qisheng, WANG Shuaishuai, WANG Qingsheng, et al. Application status and research progress of alginate dressing[J]. Chinese Journal of Reparative and Reconstructive Surgery,2014,28(2):255-258(in Chinese). doi: 10.7507/1002-1892.20140055
    [8] JIN J, JI Z, XU M, et al. Microspheres of carboxymethyl chitosan, sodium alginate, and collagen as a hemostatic agent in vivo[J]. ACS Biomaterials Science & Engineering,2018,4(7):2541-2551.
    [9] LIU X, ZHENG M, WANG X, et al. Biofabrication and characterization of collagens with different hierarchical architectures[J]. ACS Biomaterials Science & Engineering,2020,6(1):739-748.
    [10] SUN L, LI B, SONG W, et al. Comprehensive assessment of nile tilapia skin collagen sponges as hemostatic dressings[J]. Materials Science and Engineering: C,2020,109:110532. doi: 10.1016/j.msec.2019.110532
    [11] 刘晨阳, 马建中, 张跃宏. 胶原蛋白基纳米复合材料的性能及界面研究进展[J]. 复合材料学报, 2021, 38(6):1691-1702.

    LIU Chenyang, MA Jianzhong, ZHANG Yuehong. Progress on properties and interface of collagen-based nanocomposites[J]. Acta Materiae Compositae Sinica,2021,38(6):1691-1702(in Chinese).
    [12] MORGENSTERN L, MICHEL S L, AUSTIN E. Control of hepatic bleeding with microfibrillar collagen[J]. Archives of Surgery,1977,112:941-943. doi: 10.1001/archsurg.1977.01370080039005
    [13] DOILLON C J, WHYNE C F, BRANDWEIN S, et al. Collagen-based wound dressings: Control of the pore structure and morphology[J]. Journal of Biomedical Materials Research,1986,20:1219-1228. doi: 10.1002/jbm.820200811
    [14] DOILLON C J, SILVER F H. Collagen-based wound dressing: Effects of hyaluronic acid and firponectin on wound healing[J]. Biomaterials,1986,7(1):3-8. doi: 10.1016/0142-9612(86)90080-3
    [15] BHASKAR K, MOHAN C K, LINGAM M, et al. Development of SLN and NLC enriched hydrogels for transdermal deli-very of nitrendipine: In vitro and in vivo characteristics[J]. Drug Development and Industrial Pharmacy,2009,35(1):98-113. doi: 10.1080/03639040802192822
    [16] TEZGEL Ö, DISTASIO N, LAGHEZZA-MASCI V, et al. Collagen scaffold-mediated delivery of NLC/siRNA as wound healing materials[J]. Journal of Drug Delivery Science and Technology,2020,55:101421. doi: 10.1016/j.jddst.2019.101421
    [17] LAGHEZZA M V, TADDEI A R, COURANT T, et al. Characterization of collagen/lipid nanoparticle-curcumin cryostructurates for wound healing applications[J]. Macromolecular Bioscience,2019,19(5):e1800446. doi: 10.1002/mabi.201800446
    [18] RIEDE U N, JONAS I, KIRN B, et al. Collagen stabilization induced by natural humic substances[J]. Archives of Orthopaedic and Trauma Surgery,1992,111:259-264. doi: 10.1007/BF00571520
    [19] GERT J K, ROBERT E M H. Experiments on collagen-humic interactions speed of humic uptake, and effects of diverse chemical treatments[J]. Journal of Archaeological Science,1995,22:263-270. doi: 10.1006/jasc.1995.0028
    [20] LAEMMLI U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature,1970,277:680-685.
    [21] PIETRUCHA K. Changes in denaturation and rheological properties of collagen-hyaluronic acid scaffolds as a result of temperature dependencies[J]. International Journal of Biological Macromolecules,2005,36(5):299-304. doi: 10.1016/j.ijbiomac.2005.07.004
    [22] DING C, ZHANG M, LI G. Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film[J]. Carbohydrate Polymers,2015,119:194-201. doi: 10.1016/j.carbpol.2014.11.057
    [23] Bio-Rad Laboratories Inc, Informatics Division. Sadtler spectral handbooks[M]. Berkeley: Bio-Rad Laboratories Inc, 2004: 116.
    [24] 冯文坡, 祁元明, 汤克勇. 胶原-羟基磷灰石/阿拉伯树胶复合材料的制备与表征[J]. 复合材料学报, 2010, 27(6):113-119.

    FENG Wenpo, QI Yuanming, TANG Keyong. Preparation and characterization of collagen-hydroxyapatite/gum Arabic composite[J]. Acta Materiae Compositae Sinica,2010,27(6):113-119(in Chinese).
    [25] 易菊珍, 梁子倩, 张黎明. 腐植酸钠/聚丙烯酰胺水凝胶吸水性能的研究[J]. 中山大学学报(自然科学版), 2007, 46(2):36-40. doi: 10.3321/j.issn:0529-6579.2007.02.010

    YI Juzhen, LIANG Ziqian, ZHANG Liming. Studies on sodium humate/polyacrylamide hydrogels(I) synthesis and water absorption properties[J]. Journal of Sun Yat-sen University (Medical Sciences),2007,46(2):36-40(in Chinese). doi: 10.3321/j.issn:0529-6579.2007.02.010
    [26] 丁翠翠. 胶原/HPMC共混体系中大分子相互作用及相态转变特性研究[D]. 成都: 四川大学, 2015.

    DING Cuicui. Macromolecular interaction and phase transition in collagen/HPMC blends[D]. Chengdu: Sichuan University, 2015(in Chinese).
    [27] LI Y P. The mechanism of collagen self-assembly: Hydrophobic and electrostatic interactions[D]. Gainesville: The University of Florida, 2009.
    [28] PIELESZ A. Temperature-dependent FTIR spectra of collagen and protective effect of partially hydrolysed fucoidan[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2014,118:287-293. doi: 10.1016/j.saa.2013.08.056
    [29] 田振华, 何静瑄, 王颖, 等. 基于二维红外技术研究氧化羧甲基纤维素钠/胶原的相互作用及热稳定性[J]. 光谱学与光谱分析, 2021, 9(41):2782-2788.

    TIAN Zhenhua, HE Jingxuan, WANG Ying, et al. Interaction and thermal stability of oxidized carboxymethyl cellulose/collagen based on two-dimensional infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2021,9(41):2782-2788(in Chinese).
    [30] TIAN H L, LI C H, LIU W T, et al. The influence of chondroitin 4-sulfate on the reconstitution of collagen fibrils in vitro[J]. Colloids and Surfaces B: Biointerfaces,2013,105:259-266. doi: 10.1016/j.colsurfb.2013.01.005
    [31] DING C, ZHANG M, TIAN H, et al. Effect of hydroxypropyl methylcellulose on collagen fibril formation in vitro[J]. International Journal of Biological Macromolecules,2013,52:319-326. doi: 10.1016/j.ijbiomac.2012.10.003
    [32] LEE H J, AHN S H, KIM G H. Three-dimensional collagen/alginate hybrid scaffolds functionalized with a drug delivery system (DDS) for bone tissue regeneration[J]. Chemistry of Materials,2011,24(5):881-891.
    [33] PARK J H, LEE G S, SHIN U S, et al. Self-hardening microspheres of calcium phosphate cement with collagen for drug delivery and tissue engineering in bone repair[J]. Journal of the American Ceramic Society,2011,94(2):351-354. doi: 10.1111/j.1551-2916.2010.04314.x
    [34] ARAFAT M T, TRONCI G, WOOD D J, et al. In-situ crosslinked wet spun collagen triple helices with nanoscale-regulated ciprofloxacin release capability[J]. Materials Letters,2019,255:126550. doi: 10.1016/j.matlet.2019.126550
    [35] FRANCIS-SEDLAK M E, URIEL S, LARSON J C, et al. Characterization of type I collagen gels modified by glycation[J]. Biomaterials,2009,30(9):1851-1856. doi: 10.1016/j.biomaterials.2008.12.014
    [36] WU K J, WANG C Y, LU H K. Effect of glutaraldehyde on the humoral immunogenicity and structure of porcine dermal collagen membranes[J]. Archives of Oral Biology,2004,49(4):305-311. doi: 10.1016/j.archoralbio.2003.10.002
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1001
  • HTML全文浏览量:  662
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-14
  • 修回日期:  2022-02-23
  • 录用日期:  2022-03-12
  • 网络出版日期:  2022-03-22
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回