留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氟掺杂多孔聚合物的制备及其吸附性能

赵宏伟 陈广 彭琪 王瑞元 曹新秀 刘欢 刘清泉

赵宏伟, 陈广, 彭琪, 等. 氟掺杂多孔聚合物的制备及其吸附性能[J]. 复合材料学报, 2022, 39(8): 3733-3746. doi: 10.13801/j.cnki.fhclxb.20220302.002
引用本文: 赵宏伟, 陈广, 彭琪, 等. 氟掺杂多孔聚合物的制备及其吸附性能[J]. 复合材料学报, 2022, 39(8): 3733-3746. doi: 10.13801/j.cnki.fhclxb.20220302.002
ZHAO Hongwei, CHEN Guang, PENG Qi, et al. Preparation and adsorption properties of fluorine-doped porous polymers[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3733-3746. doi: 10.13801/j.cnki.fhclxb.20220302.002
Citation: ZHAO Hongwei, CHEN Guang, PENG Qi, et al. Preparation and adsorption properties of fluorine-doped porous polymers[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3733-3746. doi: 10.13801/j.cnki.fhclxb.20220302.002

氟掺杂多孔聚合物的制备及其吸附性能

doi: 10.13801/j.cnki.fhclxb.20220302.002
基金项目: 国家自然科学基金(51778226;22008060);湖南省自然科学基金(2020JJ5196)
详细信息
    通讯作者:

    刘清泉,博士,教授,博士生导师,研究方向为微孔有机高分子材料的设计、合成及应用  E-mail: qqliu@hnust.edu.cn

  • 中图分类号: TB331

Preparation and adsorption properties of fluorine-doped porous polymers

  • 摘要: 共轭微孔聚合物(CMPs)由于其稳定的孔隙结构、多样的合成方法及在气体吸附、废水染料吸附等领域的应用受到了广泛关注。设计并合成了两种氟掺杂共轭微孔聚合物:首先合成了两种含氟构筑单元1,3,5-三氟-2,4,6-三乙炔基苯(FAB)和5,10,15,20-四(2-氟-4-乙炔基苯基)卟啉(TFPP)。分别以FAB和TFPP为构筑单元,以1,1’-二溴二茂铁(Fc(Br)2)为链接单元,基于Sonogashira偶联反应,成功制备了两种氟掺杂多孔聚合物氟掺杂多孔聚合物二茂铁基(Fc)-FAB-CMP 和 Fc-TFPP-CMP。并进一步对两种多孔聚合物的化学结构、热稳定性、孔隙结构、气体及染料吸附性能等方面进行了详细的分析。结果表明,两种聚合物均表现出良好的热稳定性。Fc-FAB-CMP和 Fc-TFPP-CMP的BET比表面积分别为302.89 m2/g和125.2 m2/g,其中Fc-FAB-CMP表现出更加优异的气体吸附性能。此外,二茂铁单元与氟取代基的引入可成为阳离子染料甲基紫(MV)的吸附位点,Fc-FAB-CMP相较于许多更高比表面积的聚合物表现出对MV更优异的吸附能力,最大吸附量可达318 mg/g。

     

  • 图  1  氟掺杂多孔聚合物二茂铁基(Fc)-1,3,5-三氟-2,4,6-三乙炔基苯(FAB)-共轭微孔聚合物(CMP)和Fc-5,10,15,20-四(2-氟-4-乙炔基苯基)卟啉(TFPP)-CMP制备路线图

    Figure  1.  Synthetic routes of ferrocene (Fc)-1,3,5-trifluoro-2,4,6-triethynylbenzene (FAB)-conjugated microporous polymers (CMP) and Fc-5,10,15,20-tetrakis(2-fluoro-4-ethynylphenyl) porphyrin (TFPP)-CMP

    图  2  Fc-FAB-CMP和Fc-TFPP-CMP的FTIR图谱

    Figure  2.  FTIR spectra of Fc-FAB-CMP and Fc-TFPP-CMP

    图  3  Fc-FAB-CMP (a) 和Fc-TFPP-CMP (b) 的XPS图谱

    Figure  3.  XPS spectra of Fc-FAB-CMP (a) and Fc-TFPP-CMP (b)

    图  4  Fc-FAB-CMP和Fc-TFPP-CMP的热重曲线(a)和XRD图谱(b)

    Figure  4.  TGA curves (a) and XRD patterns (b) of Fc-FAB-CMP and Fc-TFPP-CMP

    图  5  Fc-FAB-CMP的SEM图像 (a) 和TEM图像 (c);Fc-TFPP-CMP的SEM图像 (b) 与TEM图像 (d)

    Figure  5.  SEM (a) and TEM (c) images of Fc-FAB-CMP; SEM (b) and TEM (d) images of Fc-TFPP-CMP

    图  6  Fc-FAB-CMP和Fc-TFPP-CMP的N2吸脱附曲线 (a) 和孔径分布曲线 (b)

    Figure  6.  N2 adsorption-desorption isotherms (a) and pore size distribution curves (b) of Fc-FAB-CMP and Fc-TFPP-CMP

    图  7  Fc-FAB-CMP和Fc-TFPP-CMP对N2, CH4和CO2的吸脱附曲线 ((a)~(d)) 及气体选择性拟合曲线 ((a')~(d'))

    Figure  7.  N2, CH4 and CO2 isotherms ((a)-(d)) and simulated selectivity lines ((a')-(d')) of Fc-FAB-CMP and Fc-TFPP-CMP

    图  8  Fc-FAB-CMP和Fc-TFPP-CMP对气体H2的吸附曲线 (a) 及吸附焓曲线 (b)

    Figure  8.  H2 isotherms (a) and isosteric adsorption curves (b) of Fc-FAB-CMP and Fc-TFPP-CMP

    图  9  Fc-FAB-CMP和Fc-TFPP-CMP对甲基紫(MV)溶液吸附前后的紫外吸收光谱

    Figure  9.  UV spectra curves of methyl violet (MV) solution before and after treated by Fc-FAB-CMP and Fc-TFPP-CMP

    C0—Initial concentration; Ce—Concentration at adsorption equilibrium

    图  10  Fc-FAB-CMP和Fc-TFPP-CMP对MV溶液吸附动力学拟合曲线

    Figure  10.  Adsorption kinetic curves of Fc-FAB-CMP and Fc-TFPP-CMP to MV

    Ct—Dye concentration at time t

    图  11  Fc-FAB-CMP和Fc-TFPP-CMP对甲基紫吸附的粒子内扩散模型

    Figure  11.  Intraparticle diffusion models of Fc-FAB-CMP and Fc-TFPP-CMP to MV

    Qt—Adsorption capacity at time t

    表  1  Fc-FAB-CMP和Fc-TFPP-CMP元素含量(at%)

    Table  1.   Element contents of Fc-FAB-CMP and Fc-TFPP-CMP (at%)

    MaterialCFeFN
    Fc-FAB-CMP89.664.266.08
    Fc-TFPP-CMP87.881.283.597.26
    下载: 导出CSV

    表  2  Fc-FAB-CMP和Fc-TFPP-CMP的多孔性质

    Table  2.   Porosity data of Fc-FAB-CMP and Fc-TFPP-CMP

    SampleSBET
    /(m2·g−1)
    Smicro
    /(m2·g−1)
    Smicro/SBETVtotal
    /(cm3·g−1)
    Fc-FAB-CMP302.9106.80.350.27
    Fc-TFPP-CMP125.247.10.380.14
    Notes: SBET—Specific surface area calculated from the nitrogen adsorption isotherm using the BET method; Smicro—Micropore surface area calculated from the nitrogen adsorption isotherm using the t-plot method; Vtotal—Total pore volume.
    下载: 导出CSV

    表  3  多种有机多孔材料常温、常压条件下对MV的吸附能力对比

    Table  3.   Comparison on adsorption capacity of organic porous materials to MV

    SampleSBET/(m2·g−1)Mmax/(mg·g−1)Reference
    Fc-FAB-CMP303318This work
    Fc-TFPP-CMP125120This work
    ASRM13061[43]
    Cu(BDC-NH2)(4,4’-Bipy)(0.5)12460[44]
    CMK-31568158[45]
    Notes: Mmax—Maximum adsorption of MV; ASRM—Activated sintering process red mud; Cu(BDC-NH2)(4,4’-Bipy)(0.5)—An anionic metal-organic framework; CMK-3—A mesoporous carbon material.
    下载: 导出CSV

    表  4  Fc-FAB-CMP和Fc-TFPP-CMP对MV的动力学参数和相关系数R2

    Table  4.   Kinetic parameters and correlation coefficient R2 for MV of Fc-FAB-CMP and Fc-TFPP-CMP

    SampleModelQe
    /(mg·g−1)
    k1/k2
    R2
    Fc-FAB-CMPFirst265.284.08×10−30.966
    Second393.537.46×10−60.978
    Fc-TFPP-CMPFirst115.862.92×10−30.996
    Second193.039.34×10−60.996
    Notes: Qe—Adsorption capacity at equilibrium; k1 and k2—Adsorption rate constants of the pesudo-firs model and the pesudo-second model, respectively; R2—Correlation coefficient.
    下载: 导出CSV
  • [1] 张雪杨, 王挺, 吴礼光, 等. 介孔碳/聚酰亚胺杂化膜原位聚合法制备及其气体分离性能[J]. 复合材料学报, 2018, 35(11):2958-2965.

    ZHANG X Y, WANG T, WU L G, et al. Fabrication of mesoporous carbon/polyimide hybrid membrane by in-situ polymerization and their gas separation performance[J]. Acta Materiae Compositae Sinica,2018,35(11):2958-2965(in Chinese).
    [2] KUPGAN G, ABBOTT L J, HART K E, et al. Modeling amorphous microporous polymers for CO2 capture and separations[J]. Chemical Reviews,2018,118(11):5488-5538. doi: 10.1021/acs.chemrev.7b00691
    [3] AHMED D S, EL-HITI G A, YOUSIF E, et al. Design and synthesis of porous polymeric materials and their applications in gas capture and storage: A review[J]. Journal of Polymer Research,2018,25(3):1-21.
    [4] 杨金辉, 胡世琴, 杨斌, 等. 氨化烟末生物碳吸附剂的制备及其对Cr(VI)的吸附行为[J]. 复合材料学报, 2022, 39(1):236-245.

    YANG J H, HU S Q, YANG B, et al. Preparation of ammoniated tobacco leave powder residue biochar and its adsorption behavior on Cr(VI)[J]. Acta Materiae Compositae Sinica,2022,39(1):236-245(in Chinese).
    [5] 费佳颖, 梁艺萱, 李寒冰, 等. 离子液体改性金属-有机骨架复合材料的构筑策略及在环境介质中的应用[J]. 复合材料学报, 2022, 39(6):2527-2542.

    FEI J Y, LIANG Y X, LI H B, et al. Construction strategy of ionic liquid modified metal-organic framework composite and application in environmental medium[J]. Acta Materiae Compositae Sinica,2022,39(6):2527-2542(in Chinese).
    [6] ALTAVA B, BURGUETE M I, GARCIA-VERDUGO E, et al. Chiral catalysts immobilized on achiral polymers: Effect of the polymer support on the performance of the catalyst[J]. Chemical Society Reviews,2018,47(8):2722-2771. doi: 10.1039/C7CS00734E
    [7] WU J, XU F, LI S, et al. Porous polymers as multifunctional material platforms toward task-specific applications[J]. Advanced Materials,2019,31(4):1802922. doi: 10.1002/adma.201802922
    [8] 武鑫霞, 曹占平, 苏婷, 等. Ce改性金属有机骨架材料对氟的吸附[J]. 复合材料学报, 2020, 37(10):2636-2644.

    WU X X, CAO Z P, SU T, et al. Adsorption of Ce modified metal organic framework to fluorine[J]. Acta Materiae Compositae Sinica,2020,37(10):2636-2644(in Chinese).
    [9] LATROCHE M, SURBLÉ S, SERRE C, et al. Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101[J]. Angewandte Chemie, International Edition,2006,45(48):8227-8231. doi: 10.1002/anie.200600105
    [10] ZHENG S T, YANG H Z Y. Designed synthesis of POM-organic frameworks from [Ni(6)PW(9)] building blocks under hydrothermal conditions[J]. Angewandte Chemie,2008,47(21):3909-3913. doi: 10.1002/anie.200705709
    [11] SUN D, SIMMONS J M, COLLIER C D, et al. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake[J]. Journal of the American Chemical Society,2008,130(3):1012-1016. doi: 10.1021/ja0771639
    [12] LIU Q Q, XIA B J, HUANG J, et al. Hypercrosslinked polystyrene microspheres with ultrahigh surface area and their application in gas storage[J]. Materials Chemistry and Physics,2017,199:616-622. doi: 10.1016/j.matchemphys.2017.07.032
    [13] URBAN C, MCCORD E F, WEBSTER O W, et al. 129Xe NMR studies of hyper-cross-linked polyarylcarbinols: Rigid versus flexible structures[J]. Chemistry of Materials,1995,7(7):1325-1332. doi: 10.1021/cm00055a008
    [14] NÚRIA F, MANESIOTIS P, SHERRINGTON D C, et al. Synthesis of spherical ultra-high-surface-area monodisperse amphipathic polymer sponges in the low-micrometer size range[J]. Advanced Materials,2008,20(7):1298-1302. doi: 10.1002/adma.200702237
    [15] EL-KADERI H M, HUNT J R, MENDOZA-CORTES J L, et al. Designed synthesis of 3D covalent organic frameworks[J]. Science,2007,316(5822):268-272. doi: 10.1126/science.1139915
    [16] CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science,2005,310(5751):1166-1170. doi: 10.1126/science.1120411
    [17] CÔTÉ A P, EL-KADERI H M, FURUKAWA H, et al. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks[J]. Journal of the American Chemical Society,2007,129(43):12914-12915. doi: 10.1021/ja0751781
    [18] DOGRU M, SONNAUER A, GAVRYUSHIN A, et al. A covalent organic framework with 4 nm open pores[J]. Chemi-cal Communications,2011,47(6):1707-1709. doi: 10.1039/c0cc03792c
    [19] COOPER A I. Conjugated microporous polymers[J]. Advanced Materials,2009,21(12):1291-1295. doi: 10.1002/adma.200801971
    [20] CAO X X, WANG R Y, PENG Q, et al. Effect of pore structure on the adsorption capacities to different sizes of adsorbates by ferrocene-based conjugated microporous polymers[J]. Polymer,2021,233:124192. doi: 10.1016/j.polymer.2021.124192
    [21] KIM H, CHA M C, PARK H W, et al. Preparation of a Yb (III)-Incorporated porous polymer by post-Coordination: Enhancement of gas adsorption and catalytic activity[J]. Journal of Polymer Science Part A: Polymer Chemistry,2013,51(24):5291-5297. doi: 10.1002/pola.26962
    [22] LIU Q Q, LI G, TANG Z, et al. Design and synthesis of conjugated polymers of tunable pore size distribution[J]. Materials Chemistry and Physics,2017,186:11-18. doi: 10.1016/j.matchemphys.2016.06.004
    [23] JIANG J X, SU F, TREWIN A, et al. Conjugated microporous poly(aryleneethynylene) networks[J]. Angewandte Chemie, International Edition,2010,119(45):8728-8732.
    [24] RITCHIE L K, TREWIN A, REGUERA-GALAN A, et al. Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes[J]. Microporous and Mesoporous Materials,2010,132:132-136. doi: 10.1016/j.micromeso.2010.02.010
    [25] 吴可义, 郭佳. 多尺度共轭微孔聚合物的可控合成[J]. 化学学报, 2015, 73:480-486. doi: 10.6023/A15020138

    WU K Y, GUO J. Controllable synthesis of multi-scale conjugated microporous polymer[J]. Acta Chimica Sinca,2015,73:480-486(in Chinese). doi: 10.6023/A15020138
    [26] XU Y H, JIN S B, XU H, et al. Conjugated microporous polymers: Design, synthesis and application[J]. Chemical Society Reviews,2013,42:8012-8031. doi: 10.1039/c3cs60160a
    [27] KISKAN B, WEBER J. Versatile postmodification of conju-gated microporous polymers using thiolyne chemistry[J]. ACS Macro Letters,2012,1:37-40. doi: 10.1021/mz200060z
    [28] XIANG Z H, CAO D P, WANG W C, et al. Postsynthetic lithium modification of covalent-organic polymers for enhancing hydrogen and carbon dioxide storage[J]. The Journal of Physical Chemistry C,2012,116:5974-5980. doi: 10.1021/jp300137e
    [29] MA H P, REN H, ZOU X Q, et al. Post metalation of porous aromatic frameworks for highly efficient carbon capture from CO2+N2 and CH4+N2 mixtures[J]. Polymer Chemistry,2014,5:144-152. doi: 10.1039/C3PY00647F
    [30] WERNER P H. At least 60 years of ferrocene: The discovery and rediscovery of the sandwich complexes[J]. Angewandte Chemie, International Edition,2012,51(25):6025-6058.
    [31] PETERSON B M, RODNEI B. Electrodegradation of landfill leachate in a flow electmchemical reactor[J]. Chemosphere,2005,58(1):4l-46.
    [32] SENEL M. Construction of reagentless glucose biosensor based on ferrocene conjugated polypyrrole[J]. Synthetic Metals,2011,161(17-18):1861-1868. doi: 10.1016/j.synthmet.2011.06.025
    [33] LAWAL A T, ADELOJU S B. Mediated xanthine oxidase potentiometric biosensors for hypoxanthine based on ferrocene carboxylic acid modified electrode[J]. Food Che-mistry,2012,135(4):2982-2987. doi: 10.1016/j.foodchem.2012.07.052
    [34] YASHINA A S. Anthraquinone-ferrocene film electrodes: Utility in pH and oxygen sensing[J]. Electrochemistry Communications,2008,10(12):1831-1834. doi: 10.1016/j.elecom.2008.09.031
    [35] 夏碧江, 方嘉炜, 黎姗, 等. 卟啉基多孔有机聚合物的合成、表征及其气体吸附性能研究[J]. 材料导报, 2018, 32(31):144-148.

    XIA B J, FANG J W, LI S, et al. Synthesis, characterization and gas adsorption properties of porphyrin-based porous organic ploymers[J]. Materials Reports,2018,32(31):144-148(in Chinese).
    [36] HASMUKH A, PATEL J, SANG H, et al. Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers[J]. Nature Communications,2013,4:1357. doi: 10.1038/ncomms2359
    [37] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry,2015,87(9-10):1051-1069. doi: 10.1515/pac-2014-1117
    [38] MAKHSEED S, SAMUEL J, BUMAJDAD A, et al. Synthesis and characterization of fluoropolymers with intrinsic microporosity and their hydrogen adsorption studies[J]. Journal of Applied Polymer Science,2008,109(4):2591-2597. doi: 10.1002/app.28372
    [39] GAO H, DING L, LI W, et al. Hyper-cross-linked organic microporous polymers based on alternating copolymerization of bismaleimide[J]. ACS Macro Letters,2016,5:377-381. doi: 10.1021/acsmacrolett.6b00015
    [40] TO J W, HE J, MEI J, et al. Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor[J]. Journal of the American Chemical Society,2016,138:1001-1009. doi: 10.1021/jacs.5b11955
    [41] FU X, ZHANG Y, GU S, et al. Metal microporous aromatic polymers with improved performance for small gas storage[J]. Chemistry—A European Journal, 2015, 21: 13357-13363.
    [42] WONG M, BUDA C, DUNIETZ B D. Hydrogen physisorption on the organic linker in metal organic frameworks: Ab initio computational study[J]. Journal of Physical Che-mistry B,2006,110(21):10479-10484. doi: 10.1021/jp710703m
    [43] ZHANG L, ZHANG H, GUO W, et al. Removal of malachite green and crystal violet cationic dyes from aqueous solution using activated sintering process red mud[J]. Applied Clay Science,2014,93-94:85-93. doi: 10.1016/j.clay.2014.03.004
    [44] 龚文朋, 陈丹, 杨水金. 一种阴离子型三维金属有机框架材料Cu(BDC-NH2)(4, 4'-Bipy)(0.5)(BDC=对苯二甲酸根, Bipy=联吡啶)的制备及其对甲基紫的吸附性能[J]. 应用化学, 2017(11):108-115.

    GONG W P, CHEN D, YANG S J. Adsorption of methyl violet by an anionic metal-organic framework Cu(BDC-NH2) (4, 4'-Bipy)(0.5)(BDC= terephthalicacid, Bipy=bipyridine)[J]. Chinese Journal of Applied Chemistry,2017(11):108-115(in Chinese).
    [45] 李长珍. 介孔材料CMK-3对甲基紫的吸附性能[J]. 化学研究, 2011, 22(6):61-64. doi: 10.3969/j.issn.1008-1011.2011.06.016

    LI C Z. Adsorption of methyl violet in aqueous solution by CMK-3 mesoporous materia[J]. Chemical Research,2011,22(6):61-64(in Chinese). doi: 10.3969/j.issn.1008-1011.2011.06.016
    [46] 林俊雄. 硅藻土基吸附剂的制备、表征及其染料吸附特性研究[D]. 杭州: 浙江大学, 2007.

    LIN J X. Study on preparation, characterization and dyes adsorption properties of diatomite-based adsorbent[D]. Hangzhou: Zhejiang University, 2007(in Chinese).
    [47] 刘德坤, 刘航, 杨柳, 等. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4):590-594. doi: 10.11896/cldb.201904005

    LIU D K, LIU H, YANG L, et al. Adsorption of fluoride ions by modified mesoporous alumina with lanthanum and cerium[J]. Materials Guide,2019,33(4):590-594(in Chinese). doi: 10.11896/cldb.201904005
    [48] 谭国炽, 李苏哲, 陈逸凡, 等. KMnO4和KOH改性椰壳生物炭的制备及其去除废水中铀的机理研究[J]. 南华大学学报(自然科学版), 2021, 35(5):1-6.

    TAN G C, LI S Z, CHEN Y F, et al. Preparation of KMnO4 and KOH modified coconut biochar and its adsorption mechanism of U(VI) from wastewater[J]. Journal of University of South China (Science and Technology),2021,35(5):1-6(in Chinese).
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  1106
  • HTML全文浏览量:  590
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 修回日期:  2022-01-17
  • 录用日期:  2022-01-22
  • 网络出版日期:  2022-03-05
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回