留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/二氧化锰复合材料的储能机制及其电化学性能

唐晓宁 刘珺楠 龚海锋 吴晓艺 吉贵平

唐晓宁, 刘珺楠, 龚海锋, 等. 石墨烯/二氧化锰复合材料的储能机制及其电化学性能[J]. 复合材料学报, 2022, 39(8): 3898-3905. doi: 10.13801/j.cnki.fhclxb.20220120.006
引用本文: 唐晓宁, 刘珺楠, 龚海锋, 等. 石墨烯/二氧化锰复合材料的储能机制及其电化学性能[J]. 复合材料学报, 2022, 39(8): 3898-3905. doi: 10.13801/j.cnki.fhclxb.20220120.006
TANG Xiaoning, LIU Junnan, GONG Haifeng, et al. Energy storage mechanism and electrochemical performance of graphene/manganese dioxide composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3898-3905. doi: 10.13801/j.cnki.fhclxb.20220120.006
Citation: TANG Xiaoning, LIU Junnan, GONG Haifeng, et al. Energy storage mechanism and electrochemical performance of graphene/manganese dioxide composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3898-3905. doi: 10.13801/j.cnki.fhclxb.20220120.006

石墨烯/二氧化锰复合材料的储能机制及其电化学性能

doi: 10.13801/j.cnki.fhclxb.20220120.006
基金项目: 国家自然科学基金(22065005);贵州大学引进人才科研项目(202052)
详细信息
    通讯作者:

    唐晓宁,博士,校聘副教授,硕士生导师,研究方向为储能材料及器件 E-mail: txn2004815@163.com

  • 中图分类号: TM53

Energy storage mechanism and electrochemical performance of graphene/manganese dioxide composites

  • 摘要: 超级电容器因具有高功率密度、长使用寿命等优点备受关注,而电极材料是决定其电化学性能的主要因素。以氧化石墨烯(GO)为碳源,H2O2和KMnO4为MnO2的前驱体,通过一步水热法制备了石墨烯/二氧化锰复合材料(RGO/MnO2)。采用XRD、Raman和SEM对复合材料进行微观结构表征。结果表明,复合材料中球状MnO2分布于RGO片层上。分析了RGO/MnO2的储能机制,证明其储能过程主要是受表面电容控制。在5 mV·s−1时,表面电容占总电容的86.2%,当扫速增加到200 mV·s−1时,表面电容可以占到总电容的97.3%。为提高器件的能量密度,以RGO/MnO2为正极、RGO为负极,组装了RGO/MnO2//RGO非对称超级电容器(ASC)。在功率密度为100 W·kg−1时,其能量密度高达72.8 W·h·kg−1

     

  • 图  1  石墨烯(RGO)和石墨烯/二氧化锰复合材料(RGO/MnO2)的XRD图谱 (a) 和Raman图谱 (b)

    Figure  1.  XRD patterns (a) and Raman spectra (b) of graphene (RGO) and graphene/manganese dioxide composites (RGO/MnO2)

    D—D band; G—G band

    图  2  RGO的SEM图像 (a);RGO/MnO2的SEM图像 (b)和EDS图像 (c)

    Figure  2.  SEM image of RGO (a); SEM image (b) and EDS elemental mapping images (c) of RGO/MnO2

    图  3  RGO/MnO2对称超级电容器的循环伏安(CV)曲线 (a)、恒电流充放电(GCD)曲线 (b) 和交流阻抗(EIS)图 (c);RGO/MnO2和RGO对称超级电容器在不同电流密度下的比电容 (d) 和Ragone图 (e);RGO/MnO2对称超级电容器的循环性能图 (f)

    Figure  3.  Cyclic voltammetry (CV) curves (a) and constant current charge-discharge (GCD) profiles (b), electrochemical impedance spectroscopy (EIS) plot (c) of RGO/MnO2 symmetric supercapacitor; Specific capacitance at different current densities (d) and Ragone plot (e) of RGO/MnO2 and RGO symmetric supercapacitor; Cycle performance of RGO/MnO2 symmetric supercapacitor (f)

    Rs—Ohmic resistance; Rct—Charge transfer resistance; W—Warbury impedance; C—Constant phase angle impedance

    图  4  RGO/MnO2 的总电容C对扫速v1/2作图(a) 和扫速分别为5、10、20、50、80、100、200 mV·s−1时表面与总电荷比的相关性 (b)

    Figure  4.  Specific capacitance versus inverse square root of v1/2 (a), and dependence of surface/bulk charge ratio on scan rates of RGO/MnO2 (b) (Scan rates are 5, 10, 20, 50, 80, 100, 200 mV·s−1, respectively)

    图  5  RGO/MnO2//RGO非对称超级电容器(ASC)的电化学性能:(a) 不同电压窗口下的CV曲线;(b) 扫速为10 mV·s−1时比电容随电压窗口增加的曲线;(c) CV曲线;(d) 不同扫速时的比电容;(e) GCD曲线;(f) 不同电流密度时的比电容

    Figure  5.  Electrochemical performance of asymmetric supercapacitor (ASC, RGO/MnO2//RGO): (a) CV curves measured with different potential windows; (b) Specific capacitances with the increase of potential windows at 10 mV·s−1; (c) CV curves; (d) Specific capacitance at various scan rates; (e) GCD profiles; (f) Specific capacitance at different current densities

    图  6  RGO/MnO2//RGO ASC的EIS图 (a) 和Ragone图 (b)

    Figure  6.  EIS plot (a) and Ragone plot (b) of RGO/MnO2//RGO ASC

    表  1  不同扫速v下RGO/MnO2电极的总电容(C)、双电层电容(EDLC)和赝电容(PC)

    Table  1.   Total specific capacitance (C), electrical double layer capacitance (EDLC) and pseudo-capacitance (PC) of RGO/MnO2 electrodes at different scan rates v

    Scan rate/(mV·s−1)510205080100200
    C/(F·g−1)265.0256.0246.7233.2224.6220.1216.1
    EDLC/(F·g−1)228.4230.1228.4221.6215.4211.9210.3
    PC/(F·g−1)36.625.918.311.69.28.25.8
    下载: 导出CSV
  • [1] CHEN P C, SHEN G Z, SHI Y, et al. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes[J]. ACS Nano,2010,4(8):4403-4411. doi: 10.1021/nn100856y
    [2] LANG J W, KONG L B, WU W J, et al. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors[J]. Chemical Communications,2008,35:4213-4215.
    [3] CAO L, LU M, LI H L. Preparation of mesoporous nanocrystalline Co3O4 and its applicability of porosity to the formation of electrochemical capacitance[J]. Journal of the Electrochemical Society,2005,152(5):A871-A875. doi: 10.1149/1.1883354
    [4] CHOU S L, WANG J Z, CHEW S, et al. Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors[J]. Electrochemistry Communications,2008,10(11):1724-1727. doi: 10.1016/j.elecom.2008.08.051
    [5] WU Z S, REN W C, WANG D W, et al. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors[J]. ACS Nano,2010,4(10):5835-5842. doi: 10.1021/nn101754k
    [6] LIU Y C, MIAO X F, FANG J H, et al. Layered-MnO2 nanosheet grown on nitrogen-doped graphene template as a composite cathode for flexible solid-state asymmetric supercapacitor[J]. ACS Applied Materials & Interfaces,2016,8(8):5251-5260.
    [7] ZHAO X, ZHANG L L, MURALI S, et al. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors[J]. ACS Nano,2012,6(6):5404-5412. doi: 10.1021/nn3012916
    [8] YANG S H, SONG X F, ZHANG P, et al. Facile synthesis of nitrogen-doped graphene-ultrathin MnO2 sheet compo-sites and their electrochemical performances[J]. ACS Applied Materials & Interfaces,2013,5(8):3317-3322.
    [9] SHENG L Z, JIANG L L, WEI T, et al. High volumetric energy density asymmetric supercapacitors based on well-balanced graphene and graphene-MnO2 electrodes with densely stacked architectures[J]. Small,2016,12(37):5217-5227. doi: 10.1002/smll.201601722
    [10] ZHAO Y F, RAN W, HE J, et al. High-performance asymmetric supercapacitors based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability[J]. Small,2015,11(11):1310-1319. doi: 10.1002/smll.201401922
    [11] TANG X N, LIU C Z, CHEN X R, et al. Graphene aerogel derived by purification-free graphite oxide for high performance supercapacitor electrodes[J]. Carbon,2019,146:147-154. doi: 10.1016/j.carbon.2019.01.096
    [12] QIAN H S, HAN F M, ZHANG B, et al. Non-catalytic CVD preparation of carbon spheres with a specific size[J]. Carbon,2004,42(4):761-766. doi: 10.1016/j.carbon.2004.01.004
    [13] XU Y X, SHENG K X, LI C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano,2010,4(7):4324-4330. doi: 10.1021/nn101187z
    [14] LIU Y, CAI X Y, LUO B F, et al. MnO2 decorated on carbon sphere intercalated graphene film for high-performance supercapacitor electrodes[J]. Carbon, 2016, 107: 426-432.
    [15] LI Y Y, LI Z S, SHEN P K. Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors[J]. Advanced Materials,2013,25(17):2474-2480. doi: 10.1002/adma.201205332
    [16] WANG J J, WANG J G, LIU H Y, et al. A highly flexible and lightweight MnO2/graphene membrane for superior zinc-ion batteries[J]. Advanced Functional Materials,2020,31(7):2007397.
    [17] KOU Z K, GUO B B, ZHAO Y F, et al. Molybdenum carbide-derived chlorine-doped ordered mesoporous carbon with few-layered graphene walls for energy storage applications[J]. ACS Applied Materials & Interface,2017,9(4):3702-3712.
    [18] WANG L L, GUO C, ZHU Y C, et al. A FeCl2-graphite sandwich composite with Cl doping in graphite layers: A new anode material for high-performance Li-ion batteries[J]. Nanoscale,2014,6(23):14174-14179. doi: 10.1039/C4NR05070C
    [19] JORIO A. Raman spectroscopy in graphene-based systems: Prototypes for nanoscience and nanometrology[J]. Isrn Nanotechnology,2012,2012(3):234216.
    [20] WEI X H, LIU L, ZHANG J X, et al. Mechanical, electrical, thermal performances and structure characteristics of flexible graphite sheets[J]. Journal of Materials Science,2010,45:2449-2455. doi: 10.1007/s10853-010-4216-y
    [21] YAO Y J, XU C, YU S M, et al. Facile synthesis of Mn3O4-reduced graphene oxide hybrids for catalytic decompo-sition of aqueous organics[J]. Industrial & Engineering Chemistry Research,2013,52(10):3637-3645.
    [22] JIA Henan, CAI Yifei, LIN Jinghuang, et al. Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors[J]. Advanced Science, 2018, 5(5): 1700887.
    [23] YAN J, FAN Z J, WEI T, et al. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes[J]. Carbon,2010,48:3825-3833. doi: 10.1016/j.carbon.2010.06.047
    [24] PANG M J, LONG G H, JIANG S, et al. Rapid synthesis of graphene/amorphous α-MnO2 composite with enhanced electrochemical performance for electrochemical capacitor[J]. Materials Science and Engineering: B,2015,194:41-47. doi: 10.1016/j.mseb.2014.12.028
    [25] LIU J L, WANG J, XU C H, et al. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design[J]. Advanced Science,2018,5(1):1700322. doi: 10.1002/advs.201700322
    [26] ARDIZZONE S, FREGONARA G, TRASATTI S. “Inner” and “outer” active surface of RuO2 electrodes[J]. Electrochimica Acta,1990,35(1):263-267. doi: 10.1016/0013-4686(90)85068-X
    [27] HOANG V C, NGUYEN L H, GOMES V G. High efficiency supercapacitor derived from biomass based carbon dots and reduced graphene oxide composite[J]. Journal of Electroanalytical Chemistry,2019,832:87-96. doi: 10.1016/j.jelechem.2018.10.050
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  743
  • HTML全文浏览量:  446
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 修回日期:  2022-01-05
  • 录用日期:  2022-01-07
  • 网络出版日期:  2022-01-20
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回