留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯在水泥净浆中的分散特性

吕骄阳 李思李 田波 权磊 李立辉

吕骄阳, 李思李, 田波, 等. 石墨烯在水泥净浆中的分散特性[J]. 复合材料学报, 2022, 39(10): 4746-4756. doi: 10.13801/j.cnki.fhclxb.20211214.002
引用本文: 吕骄阳, 李思李, 田波, 等. 石墨烯在水泥净浆中的分散特性[J]. 复合材料学报, 2022, 39(10): 4746-4756. doi: 10.13801/j.cnki.fhclxb.20211214.002
LV Jiaoyang, LI Sili, TIAN Bo, et al. Dispersion characteristics of graphene in cement paste[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4746-4756. doi: 10.13801/j.cnki.fhclxb.20211214.002
Citation: LV Jiaoyang, LI Sili, TIAN Bo, et al. Dispersion characteristics of graphene in cement paste[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4746-4756. doi: 10.13801/j.cnki.fhclxb.20211214.002

石墨烯在水泥净浆中的分散特性

doi: 10.13801/j.cnki.fhclxb.20211214.002
基金项目: 国家重点研发计划项目(2018YFB1600100);国家自然科学基金青年基金(51908260);中央级公益性科研院所基本科研业务费专项资金项目(2017-9060)
详细信息
    通讯作者:

    李思李,硕士,高级工程师,研究方向为公路工程 E-mail:decoli27@gmail.com

  • 中图分类号: U414

Dispersion characteristics of graphene in cement paste

  • 摘要: 为研究水泥净浆中石墨烯的分散方式和分散程度的评价方法,采用不同阴离子表面活性剂作分散助剂分散石墨烯材料,通过高速物理搅拌与超声分散方法制备石墨烯分散液。采用紫外-可见分光光度法、静置沉降法、电阻率、SEM及能谱测试观测石墨烯在碱性溶液、水泥净浆及其水泥净浆水化硬化产物中的分布方式,分析它们的分散均匀性。结果表明:在水泥基材料碱性环境中,具有耐碱性高亲油基团的分散剂,引入一定程度气泡微珠有助于提高石墨烯的分散均匀性和经时稳定性及削弱石墨烯在水泥净浆中的上浮效应,同时,其断面石墨烯分散均匀性能够提高30%。采用分光光度计法、静置法和电阻法评价石墨烯在碱性溶液中的分散效果,简单有效。

     

  • 图  1  水性环境下不同分散剂在波长190~1100 nm的吸光度曲线

    Figure  1.  Absorbance curves of different dispersants at 190-1100 nm in aqueous environment

    Ared—Red light absorbance

    图  2  碱性环境下不同分散剂在波长190~1100 nm的吸光度曲线

    Figure  2.  Absorbance curves of different dispersants at 190-1100 nm in alkaline environment

    图  3  分散液6 h稳定性表观图

    Figure  3.  Visual diagram of dispersion stability for 6 h

    图  4  分散液12 h稳定性表观图

    Figure  4.  Visual diagram of dispersion stability for 12 h

    图  5  絮凝现象表观图

    Figure  5.  Visual diagrams of the flocculation phenomenon

    图  6  石墨烯对水泥净浆的电阻率 (a) 及电导率 (b) 经时变化对比

    Figure  6.  Resistivity (a) and conductivity (b) of graphene reinforced cement paste versus time

    Ra—Resistivity a; Rb—Resistivity b; T1—Time 1; T2—Time 2

    图  7  不同水灰比石墨烯/水泥净浆电阻率 (a) 及电导率 (b) 经时变化

    Figure  7.  Resistivity (a) and conductivity (b) of graphene reinforced cement pastes with different water-cement ratios vary with time

    图  8  引气剂不同掺量的石墨烯/水泥净浆电阻率 (a) 及电导率 (b) 经时变化对比

    Figure  8.  Comparison of resistivity (a) and electrical conductivity (b) of graphene reinforced cement pastes with different dosages of air entraining agent

    图  9  不同掺量石墨烯的石墨烯/水泥净浆电阻率 (a) 及电导率 (b) 变化及对比

    Figure  9.  Resistivity (a) and conductivity (b) of graphene reinforced cement pastes with different dosages of graphene

    图  10  石墨烯/水泥净浆的SEM图像:(a) 空白组;(b) 掺加 0.01wt%石墨烯;(c) 掺加 0.1wt%石墨烯

    Figure  10.  SEM images of graphene reinforced cement pastes: (a) Blank group; (b) Doped with 0.01wt% graphene; (c) Doped with 0.1wt% graphene

    图  11  石墨烯/水泥净浆碳元素能谱分析

    Figure  11.  Carbon element energy spectrum analysis of graphene reinforced cement pastes

    C norm.—Carbon normative mineral ingredient content

    表  1  石墨烯的物理参数

    Table  1.   Physical parameters of graphene

    ModelDensity/(g·cm−3)Purity
    /%
    Conductivity characteristicTensile modulus/GPa
    Electrical conductivity/(Ω−1·cm−1)Resistivity/(mΩ·cm)
    K-10.2>99.57.141.41000
    下载: 导出CSV

    表  2  所用分散剂类型

    Table  2.   Types of dispersants used

    Reagent
    number
    Reagent type
    KT1D.BASF plurafac LF221: An alkoxy compound of a nonbranched fatty alcohol
    KT2Coconut diethanol amide 6501: Coconut oil fatty acid diethanolamide
    KT3Triton(TM) CF-10 surfactant: Water-soluble non-ionic surfactant
    KT4303: Fatty alcohol polyoxyethylene ether sodium sulfate surfactant
    KT5Dispersible liquid A: olyvinylpyrrolidone (PVP)
    KT6Polycarboxylate superplasticizer HWR-S
    KT7Plant polyene phenol polyoxyethylene ether Nsf-10e
    KT80.02% A5 hardening accelerating WR-A
    KT9MZY-A5 HPWR-S
    KT10Rosin modified polymer SY-1
    下载: 导出CSV

    表  3  试剂类型

    Table  3.   Reagent type

    Reagent numberGroupReagent type
    A(pH=7)B(pH>7)100 mL water100 mL NaOH20 mg graphene
    1KT1-AddNoneAdd
    2KT2-AddNoneAdd
    3KT3-AddNoneAdd
    4KT4-AddNoneAdd
    5KT6-AddNoneAdd
    6Blank-AddNoneAdd
    7-KT3NoneAddAdd
    8-KT1NoneAddAdd
    9-KT2NoneAddAdd
    10-KT6NoneAddAdd
    11-KT4NoneAddAdd
    12-KT7NoneAddAdd
    13-KT8NoneAddAdd
    14-KT5NoneAddAdd
    15-KT5AddNoneAdd
    16-KT9NoneAddAdd
    17-KT10NoneAddAdd
    18-BlankNoneAddAdd
    下载: 导出CSV
  • [1] 吴林烽. 氧化石墨烯纳米片对水泥基材料性能的影响[D]. 重庆: 重庆大学, 2017.

    WU Linfeng. Effect of graphene oxide nanosheets on properties of cementitious materials[D]. Chongqing: Chongqing University, 2017(in Chinese).
    [2] 匡达, 胡文彬. 石墨烯复合材料的研究进展[J]. 无机材料学报, 2013, 28(3):235-246. doi: 10.3724/SP.J.1077.2013.12345

    KUANG Da, HU Wenbin. Development of graphene composites[J]. Journal of Inorganic Materials,2013,28(3):235-246(in Chinese). doi: 10.3724/SP.J.1077.2013.12345
    [3] 陈冠雄, 谈紫琪, 赵元, 等. 面向能源领域的石墨烯研究[J]. 中国科学: 化学, 2013, 43(6):704-715. doi: 10.1360/032013-77

    CHEN Guanxiong, TAN Ziqi, ZHAO Yuan, et al. Applications of graphene for energy storage and conversion[J]. Chinese Science: Chemistry,2013,43(6):704-715(in Chinese). doi: 10.1360/032013-77
    [4] FEHER A, GOSPODAREV I A, GRISHAEV V I, et al. Effect of defects on the quasiparticle spectra of graphite and graphene[J]. Low Temperature Physics,2009,35(8):862-871. doi: 10.1063/1.3224726
    [5] WEI J C, INAM F. Processing of epoxy/graphene nanocomposites: Effects of surfactants[J]. Journal of Polymer Science & Applications,2017,1(1):1000101.
    [6] LEE C G, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer grapheme[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [7] LIN C Q, WEI W, HU Y H. Catalytic behavior of graphene oxide for cement hydration process[J]. Journal of Physics and Chemistry of Solids,2015,89(3):128-133. doi: 10.1016/j.jpcs.2015.11.002
    [8] LV S H, MA Y J, QIU C C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Construction and Building Materials,2013,49:121-127. doi: 10.1016/j.conbuildmat.2013.08.022
    [9] LV S H, LIU J J, SUN T, et al. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process[J]. Construction and Building Materials,2014,64:231-239. doi: 10.1016/j.conbuildmat.2014.04.061
    [10] HORSZCZARUK E, MIJOWSKA E, KALENCZUK R J, et al. Nanocomposite of cement/graphene oxide—Impact on hydration kinetics and Young’s modulus[J]. Construction and Building Materials,2015,78:234-242. doi: 10.1016/j.conbuildmat.2014.12.009
    [11] ZHU P, LI H, LING Q, et al. Mechanical properties and microstructure of a graphene oxide-cement composite[J]. Cement and Concrete Composites,2015,58:140-147. doi: 10.1016/j.cemconcomp.2015.02.001
    [12] BABAK F, ABOLFAZL H, ALIMORAD R, at al. Preparation and mechanical properties of graphene oxide: Cement nanocomposites[J]. The Scientific World Journal,2014,2014(4):276323. doi: 10.1155/2014/276323
    [13] SAMUEL C, ZHU P, JAY G S, et al. Nano reinforced cement and concrete composites and new perspective from graphene oxide[J]. Construction and Building Materials,2014,73:113-124. doi: 10.1016/j.conbuildmat.2014.09.040
    [14] 王琴, 王健, 刘伯伟, 等. 多壁碳纳米管水泥基复合材料的压敏性能研究[J]. 硅酸盐通报, 2016, 35(9):2733-2740. doi: 10.16552/j.cnki.issn1001-1625.2016.09.007

    WANG Qin, WANG Jian, LIU Bowei, et al. Study on pressure sensitivity of multiwalled carbon nanotubes cement-based composites[J]. Silicate Bulletin,2016,35(9):2733-2740(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2016.09.007
    [15] 杜涛. 氧化石墨烯水泥基复合材料性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    DU Tao. Study on properties of graphene oxide cement-based composites[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [16] 彭晖, 戈娅萍, 杨振天, 等. 氧化石墨烯增强水泥基复合材料的力学性能及微观结构[J]. 复合材料学报, 2018, 35(8):2132-2139. doi: 10.13801/j.cnki.fhclxb.20170919.001

    PENG Hui, GE Yaping, YANG Zhentian, et al. Mechanical properties and microstructure of graphene oxide reinforced cementbased composites[J]. Acta Materiae Compositae Sinica,2018,35(8):2132-2139(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170919.001
    [17] 吴其胜, 陈宝锐, 诸华军, 等. 热压制备改性石墨烯-水泥基复合材料: 改善微观结构、导热性能和力学性能[J]. 材料导报, 2018, 32(10):1701-1706. doi: 10.11896/j.issn.1005-023X.2018.10.025

    WU Qisheng, CHEN Baorui, ZHU Huajun, et al. Preparation of modified graphene-cement composites by hot pressing: Improvement of microstructure, thermal conductivity and mechanical properties[J]. Materials Report,2018,32(10):1701-1706(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.10.025
    [18] 韩瑞杰, 程忠庆, 高屹, 等. 多层石墨烯/钢纤维复合砂浆导电性能研究[J]. 硅酸盐通报, 2020, 39(1):34-40. doi: 10.16552/j.cnki.issn1001-1625.2020.01.004

    HAN Ruijie, CHENG Zhongqing, GAO Qi, et al. Study on electrical conductivity of multilayer graphene/steel fiber composite mortar[J]. Silicate Bulletin,2020,39(1):34-40(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2020.01.004
    [19] SHAH S P, KONSTA-GDOUTOS M S, METAXA Z S. Advanced cement based nanocomposites[M]. Netherlands: Springer, 2011: 313-327.
    [20] 吕生华, 罗潇倩, 张佳, 等. 氧化石墨烯调控水泥基材料形成大规模规整结构及其性能表征[J]. 材料导报, 2017, 31(24):10-14. doi: 10.11896/j.issn.1005-023X.2017.024.003

    LV Shenghua, LUO Xiaoqian, ZHANG Jia, et al. Graphene oxide regulates the formation of large-scale structure and characterization of cementitious materials[J]. Materials Report,2017,31(24):10-14(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.024.003
    [21] YAN X T, ZHENG D P, YANG H B, et al. Study of optimizing graphene oxide dispersion and properties of the resulting cement mortars[J]. Construction and Building Materials,2020,257:119477. doi: 10.1016/j.conbuildmat.2020.119477
    [22] ALKHATEB H, Al-OSTAZ A, CHENG A H D, et al. Materials genome for graphene-cement nanocomposites[J]. Journal of Nanomechanics and Micromechanics,2013,3(3):67-77. doi: 10.1061/(ASCE)NM.2153-5477.0000055
    [23] 徐凯丽, 张云升. 分散剂种类及浓度对石墨烯水性浆料稳定性的影响[C]. 西安: 第一届先进材料前沿学术会议, 2016: 170-174.

    XU Kaili, ZHANG Yunsheng. Effect of dispersant type and concentration on the stability of graphene aqueous slurry[C]. Xi'an: The First Advanced Materials Frontiers Academic Conference, 2016: 170-174(in Chinese).
    [24] 魏伟, 吕伟, 杨全红. 高浓度石墨烯水系分散液及其气液界面自组装膜[J]. 新型炭材料, 2011, 26(1):36-40.

    WEI Wei, LV Wei, YANG Quanhong. Graphene aqueous dispersion and its gas liquid interface self-assembled monolayer[J]. New Carbon Materials,2011,26(1):36-40(in Chinese).
    [25] 王建. 氧化石墨烯在水环境中絮凝行为及作用机制研究[D]. 北京: 华北电力大学, 2018.

    WANG Jian. Investigation of graphene oxide coagulation behaviour and interaction mechanism in water environment[D]. Beijing: North China Electric Power University, 2018(in Chinese).
    [26] 何真, 祝雯, 张丽君, 等. 粉煤灰对水泥砂浆早期电学行为与开裂敏感性影响研究[J]. 长江科学院院报, 2005(2):43-46. doi: 10.3969/j.issn.1001-5485.2005.02.012

    HE Zhen, ZHU Wen, ZHANG Lijun, et al. Effect of fly ash on early electrical behavior and cracking sensitivity of cement mortar[J]. Journal of the Changjiang Academy of Sciences,2005(2):43-46(in Chinese). doi: 10.3969/j.issn.1001-5485.2005.02.012
    [27] LV J Y, TIAN B, QUAN L, et al. Study on the in fluence of benign temperature induced admixture on thermal induced performance of cement concrete[C]. 2021 World Transport Convention. Xi'an: China Highway & Transportation Society , 2021: 167-173.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  728
  • HTML全文浏览量:  476
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 修回日期:  2021-11-16
  • 录用日期:  2021-11-27
  • 网络出版日期:  2021-12-17
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回