Construction strategy of ionic liquid modified metal-organic framework composite and application in environmental medium
-
摘要: 金属有机骨架(Metal-organic framework,MOF)是具有较高的孔隙率、比表面积及高度可设计性的新型纳米材料,在吸附分离、固相萃取等诸多领域有着广泛应用。离子液体(Ionic liquid,IL)具有稳定性好、功能可设计的特点,它作为新型绿色溶剂有极大的应用前景。将IL负载到MOF的孔隙中,开发新型离子液体改性金属有机骨架(IL/MOF)复合材料,可以充分发挥两种材料的优势。本文讨论了迄今为止IL/MOF复合材料的所有构筑策略及在大气环境介质中捕集分离CO2和去除水环境介质中污染物的应用和优势,并对未来IL/MOF复合材料在环境介质中的应用方面进行了总结和展望。Abstract: Metal-organic framework (MOF) is a new type of nanomaterials with high porosity, specific surface area and high designability, which has been widely used in many fields such as adsorption separation and solid phase extraction. Ionic liquid (IL) have good stability and functional design, which have great application prospects as new green solvents. Loading ILs into the pores of MOFs to develop new IL/MOF composites can give full play to the advantages of the two materials. In this review, we discussed all the construction strategies of IL/MOF composites so far, as well as the application and advantages of CO2 capturing and separating in atmospheric environment and removing pollutants in water environment. We also summarized and prospected the application of IL/MOF compo-sites in environmental media in the future.
-
表 1 关于离子热合成方法文献总结
Table 1. Literature review about ionothermal synthesis
表 2 后合成法制备IL/MOF复合材料的文献总结
Table 2. Literature review of IL/MOF composites prepared by post-synthesis method
Serial number IL MOF Synthesis method of IL/MOF Reference 1 ABIL HKUST-1 Wet impregnation [39] 2 ABIL-OH HKUST-1 Wet impregnation [57] 3 TSIL MIL-101(Cr) Wet impregnation [40] 4 [BMIM]Cl MIL-101 Wet impregnation [41] 5 [OMIM] Br MIL-100(Fe) Wet impregnation [58] 6 [mim(CH2)3COOH]Cl UiO-66 Wet impregnation [59] 7 [HEMIM] [DCA] ZIF-8 Wet impregnation [60] 8 [DPP-NC(3)bim] [PMO] MIL-101(Al) Tandem post synthetic modification [43] 9 MBIAILs MIL-101(Cr) Tandem post synthetic modification [44] 10 BmimOAc MIL-101-NH2 Tandem post synthetic modification [45] 11 BAIL MIL-101 Tandem post synthetic modification [46] 12 N(n-Bu)3Br、
P(n-Bu)3BrMIL-101 Tandem post synthetic modification [47] 13 AmPyI ZIF-90 Tandem post synthetic modification [56] 14 EMIMCl UiO-67(Zr) Capillary action method [52] 15 EIMS MIL-101 Capillary action method [53] 16 EIMS-HTFSA MIL-101(Cr) Capillary action method [54] 17 EMIM·DCN、EMIM·TCB MIL-100(Al) Capillary action method [55] 18 EMI-TFSA ZIF-8 Capillary action method [61] 19 EMI-TFSA ZIF-8 Capillary action method [51] 20 AmPyI ZIF-90 Capillary action method [56] 表 3 IL/MOF复合材料合成方法的优缺点比较
Table 3. Comparison of advantages and disadvantages of IL/MOF composite synthesis methods
Name of synthesis method Merits Defect Ionothermal
synthesisIonothermal synthesis Process is simple and fast Selection of MOF and IL is limited and the synthesis failure rate is high Post synthesis
methodWet impregnation Synthesis steps are simple and widely used Synthetic materials can be unstable Tandem post synthetic modification IL larger than the aperture of MOF can enter the MOF hole and the agglomeration of IL can be avoided Selection of MOF and IL has some limitations Capillary action method No solvent (more environmentally friendly), widely used Strict selection of IL and MOF 表 4 MOF材料对CO2吸附量(实验温度25℃)
Table 4. CO2 adsorption capacity of MOF(Experimental temperature: 25℃ )
Material BET/(m2·g−1) CO2 adsorption quantity/(mmol·g−1) Pressure/bar Reference Mg-MOF-74 1174 8.61 1 [70] UMCM-1 4100 23.5 24 [71] NU-100 6143 46.4 40 [72] MOF-505 1547 10.2 35 [73] MOF-210 6240 54.5 50 [74] MOF-205 4460 38.1 50 [74] MOF-200 4530 54.5 50 [74] MIL-101(Cr) 4230 40 50 [75] MOF-177 4508 33.5 35 [73] MIL-53(Al) 1300 6.8 25 [76] HKUST-1 1781 10.7 35 [73] MOF-5 2833 21.7 35 [73] 表 5 关于IL/MOF复合材料对CO2选择性提高的文献总结
Table 5. Literature review on the improvement of CO2 selectivity of IL/MOF composites
Serial number IL MOF Selectivity Multiple of CO2 selectivity increase under the optimal conditions Reference 1 [Bmim][Ac] ZIF-8 CO2/N2 18 [95] 2 [BMIM][SCN] ZIF-8 CO2/CH4; CO2/N2 2.6;
4[96] 3 [HEMIM][DCA] ZIF-8 CO2/CH4 45 [97] 4 [BMIM][MeSO4] MIL-53(Al) CO2/CH4; CO2/N2 2;
3[93, 98] 5 [BMIM][PF6] IRMOF-1 CO2/N2 70 [87] 6 [BMIM][PF6] ZIF-8 CO2/N2 1 [89] 7 [EMIM][SCN] IRMOF-1/HMOF-1/MIL-47/MOF-1 CO2/CH4; CO2/N2 - [99] 8 [BMIM][Tf2N] ZIF-8 CO2/CH4; CO2/N2 - [99-100] 9 [BMIM][BF4] UiO-66/ZIF-8/Cu-BTC CO2/N2 25 [94] -
[1] WANG B, LV X, FENG D, et al. Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. Journal of the American Chemical Society, 2016, 138(19): 6204-6216. [2] XIANG L, JIA J, HUBBERSTEY P, et al. Hydrogen storage in metal-organic frameworks[J]. Crystengcomm, 2007, 9(6): 438-448. [3] CHEN B, ZHAO X, PUTKHAM A, et al. Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material[J]. Journal of the American Chemical Society, 2008, 130(20): 6411-6423. [4] LI J, KUPPLER R J, ZHOU H. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477-1504. [5] WU C, HU A, ZHANG L, et al. A homochiral porous metal-organic framework for highly enantioselective heteroge-neous asymmetric catalysis[J]. Journal of the Ameri-can Chemical Society, 2005, 127(25): 8940-8941. [6] FURUKAWA H, KO N, YAGHI O M, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science (American Association for the Advancement of Science), 2010, 329(5990): 424-428. [7] KURMOO, MOHAMEDALLY. Magnetic metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1353-1379. [8] ALVARO M, CARBONELL E, FERRER B, et al. Semiconductor behavior of a metal-organic framework (MOF)[J]. Chemistry — A European Journal, 2007, 13(18): 5106-5112. [9] CHEN B, WANG L, ZAPATA F, et al. A luminescent microporous metal-organic framework for the recognition and sensing of anions[J]. Journal of the American Chemical Society, 2008, 130(21): 6718-6719. [10] SADAKIYO M, YAMADA T, KITAGAWA H. Rational designs for highly proton-conductive metal-organic frameworks[J]. Journal of the American Chemical Society, 2009, 131(29): 9906-9907. [11] HUANG C, QIAO X, SUN W, et al. Effective extraction of domoic acid from seafood based on postsynthetic-modified magnetic zeolite imidazolate framework-8 particles[J]. Analytical Chemistry, 2019, 91(3): 2418-2424. [12] QIAO Z, WANG N, JIANG J, et al. Design of amine-functionalized metal–organic frameworks for CO2 separation: the more amine, the better? [J]. Chemical Communications, 2016, 52(5): 974-977. [13] KAVAK S, KULAK H, POLAT H M, et al. Fast and selective adsorption of methylene blue from water using [BMIM][PF6] incorporated UiO-66 and NH2-UiO-66[J]. Crystal Growth & Design, 2020, 20(6): 3590-3595. [14] PRATEEK G, CHANDRA S T, SUPERB K, et al. Ion exchange based approach for rapid and selective Pb(II) removal using iron oxide decorated metal organic framework hybrid[J]. Journal of Environmental Management, 2021, 277: 111469. [15] SEDDON K R. Ionic liquids for clean technology[J]. Jour-nal of Chemical Technology and Biotechnology, 1997, 68(4): 351-356. [16] GUTOWSKI K E, BROKER G A, WILLAUER H D, et al. Controlling the aqueous miscibility of ionic liquids: Aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations[J]. Journal of the American Chemical Society, 2003, 125(22): 6632-6633. [17] HOFFMANN J, NÜCHTER M, ONDRUSCHKA B, et al. Ionic liquids and their heating behaviour during microwave irradiation–A state of the art report and challenge to assessment[J]. The Royal Society of Chemistry, 2003, 5(3): 296-299. [18] GUTOWSKI K E, HOLBREY J D, ROGERS R D, et al. Prediction of the formation and stabilities of energetic salts and ionic liquids based on ab initio electronic structure calculations[J]. The Journal of Physical Chemistry B, 2005, 109(49): 23196-23208. [19] PLECHKOVA N V, SEDDON K R. Applications of ionic liquids in the chemical industry[J]. Chemical Society Reviews, 2008, 37(1): 123-150. [20] KINIK F P, UZUN A, KESKIN S. Ionic liquid/metal-organic framework composites: From synthesis to applications[J]. ChemSusChem, 2017, 10(14): 2842-2863. [21] FUJIE K, KITAGAWA H. Ionic liquid transported into metal–organic frameworks[J]. Coordination Chemistry Reviews, 2016, 307: 382-390. [22] PARK K S, NI Z, CÔTÉ A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences, 2006, 103(27): 10186-10191. [23] COTA I, FERNANDEZ M F. Recent advances in the synthesis and applications of metal organic frameworks doped with ionic liquids for CO2 adsorption[J]. Coordination Chemistry Reviews, 2017, 351: 189-204. [24] MOHD F M, HAYYIRATUL F M Z, CHONG F K, et al. Ionic liquid@metal-organic framework as a solid electrolyte in a lithium-ion battery: Current performance and perspec-tive at molecular level[J]. Nanomaterials, 2022, 12: 1076. [25] NOZARI V, KESKIN S, UZUN A. Toward rational design of ionic liquid/metal–organic framework composites: effects of interionic interaction energy[J]. ACS Omega, 2017, 2(10): 6613-6618. [26] 文桂林, 李莹, 张红星, 等. 离子液体/金属-有机骨架复合材料制备方法, 理论计算及应用研究进展[J]. 复合材料学报, 2021, 38(2): 298-314.WEN Guilin, LI Ying, ZHANG Hongxing, et al. Preparation methods, theoretical calculation and application research progress of ionic liquid/metal-organic framework composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 298-314(in Chinese) [27] COOPER E R, ANDREWS C D, WHEATLEY P S, et al. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues[J]. Nature, 2004, 430(44): 1012-1016. [28] VAID T P, KELLEY S P, ROGERS R D. Structure-directing effects of ionic liquids in the ionothermal synthesis of metal-organic frameworks[J]. IUCrJ, 2017, 4(4): 380-392. [29] LIU C, ZHANG G, ZHAO C, et al. MOFs synthesized by the ionothermal method addressing the leaching problem of IL–polymer composite membranes[J]. Chemical Communication, 2014, 50(91): 14121-14124. [30] YANG H M, SONG X L, YANG T L, et al. Electrochemical synthesis of flower shaped morphology MOFs in an ionic liquid system and their electrocatalytic application to the hydrogen evolution reaction[J]. RSC Advances, 2014, 4(30): 15720-15726. [31] XU L, KWON Y, CASTRO B, et al. Novel Mn(II)-based metal-organic frameworks isolated in ionic liquids[J]. Crystal Growth & Design, 2013, 13(3): 1260-1266. [32] SHIN D M, LEE I S, CHUNG Y K. Rational synthesis and characterization of robust microporous metal−organic frameworks with base functionality[J]. Crystal Growth & Design, 2006, 6(5): 1059-1061. [33] LIN Z, WRAGG D S, MORRIS R E. Microwave-assisted synthesis of anionic metal-organic frameworks under ionothermal conditions[J]. Chemical Communications, 2006(19): 2021-2023. [34] ERMER M, MEHLER J, KRIESTEN M, et al. Synthesis of the novel MOF hcp UiO-66 employing ionic liquids as a linker precursor[J]. Dalton Transactions: An International Journal of Inorganic Chemistry, 2018, 47(41): 14426-14430. [35] XU L, LIU B. The influence of 1-al-kyl-3-methyl imidazolium ionic liquids o-n a series of cobalt-1, 4-benzenedicarboxylate metal–organic frameworks[J]. Crystengcomm, 2014, 16(46): 10649-10657. [36] ZHANG Z H, BING L, LING X, et al. Combination effect of ionic liquid components on the structure and properties in 1, 4-benzenedicarboxylate based zinc metal-organic frameworks[J]. Dalton Transactions, 2015, 44(41): 17980-17989. [37] COHEN S M. Modifying MOFs: New chemistry, new materials[J]. Chemical Science (Cambridge), 2010, 1(1): 32-36. [38] YOSHIDA Y, KITAGAWA H. Ionic conduction in metal-organic frameworks with incorporated ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 70-81. [39] LUO Q, AN B, JI M, et al. Metal-organic frameworks HKUST-1 as porous matrix for encapsulation of basic ionic liquid catalyst: Effect of chemical behaviour of ionic liquid in solvent[J]. Journal of Porous Materials, 2015, 22(1): 247-259. [40] BAHADORI M, TANGESTANINEJAD S, BERTMER M, et al. Task-specific ionic liquid functionalized-MIL-101(Cr) as a heterogeneous and efficient catalyst for the cycloaddition of CO2 with epoxides under solvent free conditions[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 3962-3973. [41] KHAN N A, HASAN Z, JHUNG S H. Ionic liquids supported on metal-organic frameworks: Remarkable adsorbents for adsorptive desulfurization[J]. Chemistry-A European Journal, 2014, 20(2): 376-380. [42] QI Z, QIU T, WANG H, et al. Synthesis of ionic-liquid-functionalized UiO-66 framework by post-synthetic ligand exchange for the ultra-deep desulfurization[J]. Fuel, 2020, 268: 117336. [43] KING W, GILLESPIE Y, GILBERT K, et al. Characterization of polydioxanone in near-field electrospinning[J]. Polymers, 2020, 12(1): 1-16. [44] HAN M, LI Y, GU Z, et al. Immobilization of thiol-functionalized ionic liquids onto the surface of MIL-101(Cr) frameworks by S Cr coordination bond for biodiesel production[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553: 593-600. [45] CHONG S Y, WANG T T, CHENG L C, et al. Metal–organic framework MIL-101-NH2-supported acetate-based butylimidazolium ionic liquid as a highly efficient heterogeneous catalyst for the synthesis of 3-Aryl-2-oxazolidinones[J]. Langmuir, 2019, 35(2): 495-503. [46] LUO Q X, JI M, LU M H, et al. Organic electron-rich N-heterocyclic compound as a chemical bridge: Building a Bronsted acidic ionic liquid confined in MIL-101 nano-cages[J]. Journal of Materials Chemistry A Materials for Energy and Sustainability, 2013, 1(22): 6530-6534. [47] MA D, LI B, LIU K, et al. Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions[J]. Journal of Materials Chemistry A, 2015, 3(46): 23136-23142. [48] COSTA G M, PISON L, ERVINKA C, et al. Porous ionic liquids or liquid metal-organic frameworks?[J]. Angewandte Chemie International Edition, 2018, 57(37): 11909-11912. [49] ALULA Y, JING L, SHUN Y. Various metal organic frameworks combined with imidazolium, quinolinum and benzothiazolium ionic liquids for removal of three antibiotics from water[J]. Journal of Molecular Liquids, 2020, 318: 114304. [50] LUO J W, CHENG X M, JI W, et al. N-doped porous carbon chain with 3D interconnected network structure to modify expanded graphite for efficient thermal energy storage materials[J]. Journal of Energy Storage, 2022, 47: 103634. [51] FUJIE K, OTSUBO K, IKEDA R, et al. Low temperature ionic conductor: ionic liquid incorporated within a metal-organic framework[J]. Chemical Science, 2015, 6(7): 4306-4310. [52] CHEN L, WU B, ZHAO H, et al. High temperature ionic conduction mediated by ionic liquid incorporated within the metal-organic framework UiO-67(Zr)[J]. Inorganic Chemistry Communications, 2017, 81: 1-4. [53] CHEN H, HAN S Y, LIU R H, et al. High conductive, long-term durable, anhydrous proton conductive solid-state electrolyte based on a metal-organic framework impregnated with binary ionic liquids: Synthesis, characteristic and effect of anion[J]. Journal of Power Sources, 2018, 376: 168-176. [54] SUN X, DENG W, CHEN H, et al. A metal-organic framework impregnated with a binary ionic liquid for safe proton conduction above 100°C[J]. Chemistry-A European Journal, 2017, 23(6): 1248-1252. [55] AIJAZ A, AKITA T, YANG H, et al. From ionic-liquid@metal–organic framework composites to heteroatom-decorated large-surface area carbons: Superior CO2 and H2 uptake[J]. Chemical Communications, 2014, 50(49): 6498. [56] THARUN J, BHIN K, ROSHAN R, et al. Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2[J]. Green Chemistry: An international Journal and Green Chemistry Resource : GC, 2016, 18(8): 2479-2487. [57] LUO Q, SONG X, JI M, et al. Molecular size- and shape-selective Knoevenagel condensation over microporous Cu3(BTC)2 immobilized amino-functionalized basic ionic liquid catalyst[J]. Applied Catalysis A: General, 2014, 478: 81-90. [58] JIN M, NIU Q, LIU G, et al. Encapsulation of ionic liquids into POMs-based metal–organic frameworks: Screening of POMs-ILs@MOF catalysts for efficient cycloolefins epoxidation[J]. Journal of Materials Science, 2020, 55(19): 8199-8210. [59] QI Z, QIU T, WANG H, et al. Synthesis of ionic-liquid-functionalized UiO-66 framework by post-synthetic li-gand exchange for the ultra-deep desulfurization[J]. Fuel (Guildford), 2020, 268: 117336. [60] ZEESHAN M, NOZARI V, YAGCI M B, et al. Core–shell type ionic liquid/metal organic framework composite: An exceptionally high CO2/CH4 selectivity[J]. Journal of the Ameri-can Chemical Society, 2018, 140(32): 10113-10116. [61] FUJIE K, YAMADA T, IKEDA R, et al. Introduction of an ionic liquid into the micropores of a metal-organic framework and its anomalous phase behavior[J]. Angewandte Chemie International Edition, 2014, 53(42): 11302-11305. [62] 陈银玲. 石墨烯基复合材料的制备及其对环境污染物的吸附研究[D]. 郑州: 河南工业大学, 2019.CHEN Yinling. Preparation of graphene-based compo-sites and their adsorption of environmental pollutants[D]. Zhengzhou: Henan University of Technology, 2019(in Chinese). [63] 徐水萍, 梁美娜, 张庆, 等. 铁锰氧化物及其复合材料的研究进展[J]. 环境科学与技术, 2021, 42(10):197-206.XU Shuiping, LIANG Meina, ZHANG Qing, et al. Research progress of iron manganese oxides and their composites[J]. Environmental Science and Technology,2021,42(10):197-206(in Chinese). [64] 刘彬. 中国实现碳达峰和碳中和目标的基础、挑战和政策路径[J]. 价格月刊. 2021(11): 87-94.LIU Bin. Basis, challenges and policy paths for China to achieve carbon peaking and carbon neutrality[J]. Prices Monthly, 2021(11): 87-94(in Chinese). [65] CAVENATI S, GRANDE C A, RODRIGUES A E. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures[J]. Journal of Chemical & Engineering Data, 2004, 49(4): 1095-1101. [66] NIE F, HE D, GUAN J, et al. The influence of abundant calcium oxide addition on oil sand pyrolysis[J]. Fuel Processing Technology, 2017, 155: 216-224. [67] IDA J I, XIONG R, LIN Y S. Synthesis and CO2 sorption properties of pure and modified lithium zirconate[J]. Separation & Purification Technology, 2004, 36(1): 41-51. [68] ZHAO Z, LI Z, LIN Y S. Adsorption and diffusion of carbon dioxide on metal-organic framework (MOF-5)[J]. Industrial & Engineering Chemistry Research, 2009, 48(22): 10015-10020. [69] MORRIS R V, RUFF S W, GELLERT R, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990): 424-428. [70] BAO Z, YU L, REN Q, et al. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework[J]. Journal of Colloid and Interface Science, 2011, 353(2): 549-556. [71] MU B, SCHOENECKER P M, WALTON K S. Gas adsorption study on mesoporous metal-organic framework UMCM-1[J]. Journal of Physical Chemistry C, 2010, 114(14): 6464-6471. [72] FARHA O K, ERYAZICI I, JEONG N C, et al. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit?[J]. Journal of the American Chemical Society, 2012, 134(36): 15016-15021. [73] MILLWARD A R, YAGHI O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. Journal of the American Chemical Society, 2005, 127(51): 17998-17999. [74] FARHA O K, ÖZGÜR YAZAYDIN A, ERYAZICI I, et al. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities[J]. Nature Chemistry, 2010, 2(11): 944-948. [75] LLEWELLYN P L, BOURRELLY S, SERRE C, et al. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101[J]. Langmuir, 2008, 24(14): 7245-7250. [76] ARSTAD B, FJELLVÅG H, KONGSHAUG K O, et al. Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide[J]. Adsorption, 2008, 14(6): 755-762. [77] QIAO Z, WANG N, JIANG J, et al. Design of amine-functionalized metal-organic frameworks for CO2 separation: The more amine, the better?[J]. Chemical Communications, 2016, 52(5): 974-977. [78] ZONS T, BROKMANN L, LIPPKE J, et al. Postsynthetic modification of metal-organic frameworks through nitrile oxide-alkyne cycloaddition[J]. Inorganic Chemistry, 2018, 57(6): 3348-3359. [79] COHEN S M. The postsynthetic renaissance in porous solids[J]. Journal of the American Chemical Society, 2017, 139(8): 2855-2863. [80] FLAIG R W, OSBORN P T M, FRACAROLI A M, et al. The chemistry of CO2 capture in an amine-functionalized metal-organic framework under dry and humid conditions[J]. Journal of the American Chemical Society, 2017, 139(35): 12125-12128. [81] HUANG Y B, LIANG J, WANG X S, et al. Multifunctional metal-organic framework catalysts: Synergistic catalysis and tandem reactions[J]. Chemical Society Reviews, 2016, 46(1): 126-157. [82] 赵亚梅, 曹婷婷, 丁思奇, 等. 基于离子液体修饰的金属有机骨架材料在CO2分离与转化方面的研究进展[J]. 化学研究与应用, 2021, 33(9): 1633-1641.ZHAO Yamei, CAO Tingting, DING Siqi, et al. Research progress of ionic liquid modified metal organic frameworks in CO2 separation and conversion[J]. Chemical Research and Application, 2021, 33(9): 1633-1641(in Chinese). [83] XIA X, LI W, LI S. On the water stability of ionic liquids/Cu-BTC composites: An experimental study[J]. Journal of Nanoparticle Research, 2019, 21(2): 39. [84] XIA X, HU G, LI W, et al. Understanding reduced CO2 uptake of ionic liquid/metal–organic framework (IL/MOF) composites[J]. ACS Applied Nano Materials, 2019, 2(9): 6022-6029. [85] THOMAS A, PRAKASH M. Tuning the CO2 adsorption by the selection of suitable ionic liquids at ZIF-8 confinement: A DFT study[J]. Applied Surface Science, 2019, 491: 633-639. [86] YANG G, YU J, PENG S, et al. Poly(ionic liquid)-modified metal organic framework for carbon dioxide adsorption[J]. Polymers, 2020, 12(2): 370-379. [87] CHEN Y, HU Z, GUPTA K M, et al. Ionic liquid/metal-organic framework composite for CO2 capture: A computational investigation[J]. The Journal of Physical Chemistry C, 2011, 115(44): 21736-21742. [88] GUPTA K M, CHEN Y, HU Z, et al. Metal-organic framework supported ionic liquid membranes for CO2 capture: Anion effects[J]. Physical Chemistry Chemical Physics, 2012, 14(16): 5785-5794. [89] KINIK F P, ALTINTAS C, BALCI V, et al. [BMIM][PF6] incorporation doubles CO2 selectivity of ZIF-8: Elucidation of interactions and their consequences on performance[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 30992-31005. [90] VICENT-LUNA J M, GUTIÉRREZ-SEVILLANO J J, ANTA J A, et al. Effect of room-temperature ionic liquids on CO2 separation by a Cu-BTC metal-organic framework[J]. The Journal of Physical Chemistry C, 2013, 117(40): 20762-20768. [91] SEZGINEL K B, KESKIN S, UZUN A. Tuning the gas separation performance of Cu-BTC by ionic liquid incorporation[J]. Langmuir, 2016, 32(4): 1139-1147. [92] 李建惠, 兰天昊, 陈杨, 等. MOF复合材料在气体吸附分离中的研究进展[J]. 化工学报, 2021, 72(1): 167-179.LI Jianhui, LAN Tianhao, CHEN Yang, et al. Research progress of MOF composites in gas adsorption and separation[J]. Journal of Chemical Industry and Engineering China, 2021, 72(1): 167-179(in Chinese). [93] KAVAK S, POLAT H M, KULAK H, et al. MIL-53(Al) as a versatile platform for ionic-liquid/MOF composites to enhance CO2 selectivity over CH4 and N2[J]. Chemistry-An Asian Journal,2019,14(20):3655-3667. [94] POLAT H M, KAVAK S, KULAK H, et al. CO2 separation from flue gas mixture using [BMIM][BF4]/MOF compo-sites: Linking high-throughput computational screening with experiments[J]. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 2020, 394: 124916. [95] MOHAMEDALI M, IBRAHIM H, HENNI A. Incorporation of acetate-based ionic liquids into a zeolitic imidazolate framework (ZIF-8) as efficient sorbents for carbon dioxide capture[J]. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 2018, 334: 817-828. [96] ZEESHAN M, KESKIN S, UZUN A. Enhancing CO2/CH4 and CO2/N2 separation performances of ZIF-8 by post-synthesis modification with [BMIM][SCN][J]. Polyhedron, 2018, 155: 485-492. [97] ZEESHAN M, NOZARI V, YAGCI M B, et al. Core-shell type ionic liquid/metal organic framework composite: An exceptionally high CO2/CH4 selectivity[J]. Journal of the American Chemical Society, 2018, 140(32): 10113-10116. [98] KULAK H, POLAT H M, KAVAK S, et al. Improving CO2 separation performance of MIL-53(Al) by incorporating 1-n-butyl-3-methylimidazolium methyl sulfate[J]. Energy Technol (Weinh), 2019, 7(7): 1900157. [99] VICENT-LUNA J M, GUTIÉRREZ-SEVILLANO J J, HAMAD S, et al. Role of ionic liquid [EMIM]+[SCN]− in the adsorption and diffusion of gases in metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29694-29704. [100] MOHAMED A, KROKIDAS P, ECONOMOU I G. CO2 selective metal organic framework ZIF-8 modified through ionic liquid encapsulation: A computational study[J]. Jour-nal of Computational Science, 2018, 27: 183-191. [101] WU W, XUE W, ZHENG Y, et al. Diurnal regulation of VOCs may not be effective in controlling ozone pollution in China[J]. Atmospheric Environment, 2021, 256: 118442. [102] ZHU Z, WU R. The degradation of formaldehyde using a Pt@TiO2 nanoparticles in presence of visible light irradiation at room temperature[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50: 276-281. [103] BAHRI M, HAGHIGHAT F, ROHANI S, et al. Impact of design parameters on the performance of non-thermal plasma air purification system[J]. Chemical Engineering Journal, 2016, 302: 204-212. [104] SHAYEGAN Z, LEE C, HAGHIGHAT F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase-A review[J]. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 2018, 334: 2408-2439. [105] SHAH S A, WANG R M, ZHU G, et al. IL-assisted synthesis of defect-rich polyaniline/NH2-MIL-125 nanohybrids with strengthened interfacial contact for ultra-fast photocatalytic degradation of acetaldehyde under high humidity[J]. Chemical Engineering Journal, 2021, 411: 128590. [106] CANIVET J, FATEEVA A, GUO Y, et al. Water adsorption in MOFs: Fundamentals and applications[J]. Chemical Society Reviews, 2014, 43(16): 5594-5617. [107] WANG C, LIU X, DEMIR N K, et al. Applications of water stable metal-organic frameworks[J]. Chemical Society Reviews, 2016, 45(18): 5107. [108] GUTIÉRREZ-SEVILLANO J J, VICENT-LUNA J M, DUBBELDAM D, et al. Molecular mechanisms for adsorption in Cu-BTC metal organic framework[J]. Journal of Physical Chemistry C, 2013, 117(21): 11357-11366. [109] CHEN Q, HE Q, LV M, et al. Selective adsorption of cationic dyes by UiO-66-NH2[J]. Applied Surface Science, 2015, 327: 77-85. [110] ZHANG Q, YU J, CAI J, et al. A porous metal-organic framework with -COOH groups for highly efficient pollu-tant removal[J]. Chem Commun (Camb), 2014, 50(92): 14455-14458. [111] JABLI M, TKA N, RAMZI K, et al. Physicochemical characteristics and dyeing properties of lignin-cellulosic fibers derived from Nerium oleander[J]. Journal of Molecular Liquids, 2018, 249: 1138-1144. [112] LI K, HE Y, XU Y, et al. Degradation of Rhodamine B using an unconventional graded photoelectrode with wedge structure[J]. Environmental Science & Technology, 2011, 45(17): 7401-7407. [113] XIAO Y, CHEN F, ZHU X, et al. Ionic liquid-assisted formation of lanthanide metal-organic framework nano/microrods for superefficient removal of Congo red[J]. Chemical Research in Chinese Universities, 2015, 31(6): 899-903. [114] FORGACS E, CSERHÁTI T, OROS G. Removal of synthetic dyes from wastewaters: A review[J]. Amsterdam: Elsevier Ltd,2004,30:953-971. [115] FAN C, LIANG Y, DONG H, et al. Guanidinium ionic liquid-controlled synthesis of zeolitic imidazolate framework for improving its adsorption property[J]. Science of The Total Environment, 2018, 640-641: 163-173. [116] RENEW J E, HUANG C H. Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography-electrospray mass spectrometry[J]. Journal of Chromatography A,2004,1042(1-2):113-121. [117] GHOLAMI H, GHAEDI M, ARABI M, et al. Application of molecularly imprinted biomembrane for advancement of matrix solid-phase dispersion for clean enrichment of parabens from powder sunscreen samples: Optimization of chromatographic conditions and green approach[J]. Acs Omega, 2019, 4(2): 3839-3849. [118] BAGHERI A R, ARABI M, GHAEDI M, et al. Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples[J]. Talanta, 2019, 195: 390-400. [119] OSTOVAN A, GHAEDI M, ARABI M, et al. Hydrophilic multitemplate molecularly imprinted biopolymers based on a green synthesis strategy for determination of B-family vitamins[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4140-4150. [120] ARABI M, GHAEDI M, OSTOVAN A. Development of a lower toxic approach based on green synthesis of water-compatible molecularly imprinted nanoparticles for the extraction of hydrochlorothiazide from human urine[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 3775-3785. [121] LU D, LIU C, QIN M, et al. Functionalized ionic liquids-supported metal organic frameworks for dispersive solid phase extraction of sulfonamide antibiotics in water samples[J]. Analytica Chimica Acta,2020,1133:88-98. [122] LU D, QIN M, LIU C, et al. Ionic liquid-functionalized magnetic metal–organic framework nanocomposites for efficient extraction and sensitive detection of fluoroquinolone antibiotics in environmental water[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5357-5367. [123] QIN J, HUANG Y, SHI M, et al. Aqueous-phase detection of antibiotics and nitroaromatic explosives by an alkali-resistant Zn-MOF directed by an ionic liquid[J]. RSC Advances, 2020, 10(3): 1439-1446. [124] SARKER M, AHMED I, JHUNG S H. Adsorptive removal of herbicides from water over nitrogen-doped carbon obtained from ionic liquid@ZIF-8[J]. Chemical Engineering Journal, 2017, 323: 203-211. [125] AHMED I, ADHIKARY K K, LEE Y, et al. Ionic liquid entrapped UiO-66: Efficient adsorbent for Gd3+ capture from water[J]. Chemical Engineering Journal, 2019, 370: 792-799. [126] NASROLLAHPOUR A, MORADI S E. Hexavalent chromium removal from water by ionic liquid modified metal-organic frameworks adsorbent[J]. Microporous and Mesoporous Materials, 2017, 243: 47-55. [127] NAZMUL A K, ZUBAIR H, SUNG H J, et al. Ionic liquids supported on metal-organic frameworks: Remarkable adsorbents for adsorptive desulfurization[J]. Chemistry A European Journal, 2014, 20: 376-380. [128] XU Z, ZHAO G, ULLAH L, et al. Acidic ionic liquid based UiO-67 type MOFs: A stable and efficient heterogeneous catalyst for esterification[J]. RSC Advances, 2018, 8: 10009-10016. [129] DAI Q Q, YANG Z F, LI J, et al. Zirconium-based MOFs-loaded ionic liquid-catalyzed preparation of biodiesel from Jatropha oil[J]. Renewable Energy, 2021, 163: 1588-1594. [130] WANG N, LIANG S, ZHANG L, et al. Ionic liquid supported nickel-based metal-organic framework for electrochemical sensing of hydrogen peroxide and electrocatalytic oxidation of methanol[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603: 125199. [131] QIAN S, XIA L, YANG L, et al. Defect-free mixed-matrix membranes consisting of anion-pillared metal-organic frameworks and poly(ionic liquid)s for separation of acetylene from ethylene[J]. Journal of Membrane Science, 2020, 611: 118329.