留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

活化剂对大豆壳制备的多孔碳材料储锂性能的影响

李鑫 王秋芬 田会芳 缪娟 许卫国 郑影 曲志珂

李鑫, 王秋芬, 田会芳, 等. 活化剂对大豆壳制备的多孔碳材料储锂性能的影响[J]. 复合材料学报, 2022, 39(10): 4664-4673. doi: 10.13801/j.cnki.fhclxb.20211129.003
引用本文: 李鑫, 王秋芬, 田会芳, 等. 活化剂对大豆壳制备的多孔碳材料储锂性能的影响[J]. 复合材料学报, 2022, 39(10): 4664-4673. doi: 10.13801/j.cnki.fhclxb.20211129.003
LI Xin, WANG Qiufen, TIAN Huifang, et al. Effect of activator on lithium storage performance of porous carbon materials prepared from soybean hulls[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4664-4673. doi: 10.13801/j.cnki.fhclxb.20211129.003
Citation: LI Xin, WANG Qiufen, TIAN Huifang, et al. Effect of activator on lithium storage performance of porous carbon materials prepared from soybean hulls[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4664-4673. doi: 10.13801/j.cnki.fhclxb.20211129.003

活化剂对大豆壳制备的多孔碳材料储锂性能的影响

doi: 10.13801/j.cnki.fhclxb.20211129.003
基金项目: 河南省高校基本科研业务费专项资金(NSFRF200402);河南省高校重点科研项目(22A530001)
详细信息
    通讯作者:

    王秋芬,博士,副教授,硕士生导师,主要从事新能源材料及器件等方面的研究工作 E-mail: wqf@hpu.edu.cn

  • 中图分类号: TM912.9

Effect of activator on lithium storage performance of porous carbon materials prepared from soybean hulls

  • 摘要: 生物质多孔碳材料因来源广泛、性价比高,被广泛应用在锂离子电池中,而制备过程中使用的活化剂对材料储锂性能影响较大。因此,以大豆壳为碳源,在不同工艺条件下制备多孔碳材料,通过结构表征和电化学性能测试,考察活化剂对多孔碳材料储锂性能的影响。研究表明:(1)当电流密度为185 mA·g−1,电压范围为0~3.0 V时,经CaCl2活化的多孔碳材料(DK-CaCl2)的首次放充电比容量为639.0/269.5 mA·h·g−1,而KOH活化的多孔碳(DK-KOH)的首次放充电比容量为986.7/307.5 mA·h·g−1;(2)大豆壳∶KOH的质量比分别为1∶2、1∶4和1∶8时,得到的多孔碳的首次放充电比容量为544.9/136.8、986.7/307.5和375.1/93.4 mA·h·g−1,200次循环后放电比容量分别为88.8、318.9和94.7 mA·h·g−1。这说明不同活化剂及不同活化比例制备的多孔碳材料储锂性能不同,这是由于材料的比表面积不同,导致了电化学性能的不同。

     

  • 图  1  以大豆壳为碳源通过水热法和高温碳化法制备多孔碳(DK)材料的流程示意图

    Figure  1.  Schematic diagram of preparation process of porous carbon (DK) materials by hydrothermal method and high temperature carbonization method using soybean shell as carbon source

    图  2  DK-CaCl2和DK-KOH材料的XRD图谱(a)、FTIR 图谱(b)和拉曼图谱(c)

    Figure  2.  XRD patterns (a), FTIR spectra (b) and Raman spectra (c) of DK-CaCl2 and DK-KOH

    ID/IG—Ratio of intensity of disordered carbon peak (D) to graphitized carbon peak (G)

    图  3  DK-CaCl2和DK-KOH 材料的 SEM图像 ((a), (b)) 和TEM 图像 ((c), (d))

    Figure  3.  SEM images ((a), (b)) and TEM images ((c), (d)) of DK-CaCl2 and DK-KOH

    图  4  DK-CaCl2和DK-KOH材料的N2吸附脱附曲线(a)和孔径分布曲线(b)

    Figure  4.  N2 adsorption and desorption curves (a) and pore size distribution curves (b) of DK-CaCl2 and DK-KOH

    图  5  (a) 材料的首次充放电性能图;(b) 循环性能图;(c) DK-CaCl2的CV图;(d) DK-KOH的CV图;(e) EIS图;(f) 不同荷电状态下角频率平方根的倒数(ω−1/2)与Z'的关系

    Figure  5.  (a) Initial charge-discharge performance diagram; (b) Cyclic performance diagram; (c) CV diagram of DK-CaCl2; (d) CV diagram of DK-KOH; (e) EIS of DK-CaCl2 and DK-KOH materials; (f) Relationship between Z' and reciprocal of square root of angular frequency (ω−1/2) under different states of charge

    图  6  DK-2KOH、DK-4KOH、DK-8KOH的XRD 图谱(a)和拉曼图谱(b)

    Figure  6.  XRD pattern (a) and Raman pattern (b) of DK-2KOH, DK-4KOH and DK-8KOH

    DK-2KOH, DK-4KOH and DK-8KOH—Mass ratios of 1∶2, 1∶4 and 1∶8 of soybean husk∶KOH

    图  7  DK-2KOH、DK-4KOH和DK-8KOH材料的SEM图像 ((a)~(c)) 和TEM图像 ((d)~(f))

    Figure  7.  SEM images ((a)-(c)) and TEM images ((d)-(f)) of DK-2KOH, DK-4KOH and DK-8KOH

    图  8  (a)材料的首次充放电性能图;(b)循环性能图;(c) DK-2KOH的CV图;(d) DK-4KOH 的CV图;(e) DK-8KOH 的CV图;(f) EIS图;(g)不同荷电状态下角频率的平方根的倒数(ω−1/2)与Z'的关系

    Figure  8.  (a) Initial charge-discharge performance diagram; (b) Cyclic performance diagram; (c) CV diagram of DK-2KOH; (d) CV diagram of DK-4KOH; (e) CV diagram of DK-8KOH; (f) EIS diagram; (g) Relationship between Z' and reciprocal of square root of angular frequency (ω−1/2) under different states of charge

    表  1  DK-CaCl2和 DK-KOH的拟合线性数据

    Table  1.   Fitting linear data of DK-CaCl2 and DK-KOH

    MaterialInterceptSlope
    DK-CaCl267.3721.75
    DK-KOH39.3117.52
    下载: 导出CSV

    表  2  DK-2KOH、DK-4KOH和DK-8KOH的拟合线性数据

    Table  2.   Fitting linear data of DK-2KOH, DK-4KOH and DK-8KOH

    MaterialInterceptSlope
    DK-2KOH62.3245.18
    DK-4KOH40.2316.14
    DK-8KOH92.57102.00
    下载: 导出CSV
  • [1] 岳红伟, 陈淑君, 吴培成, 等. 竹基碳纤维/MoS2锂离子电池负极材料[J]. 复合材料学报, 2021, 38(11):3590-3597. doi: 10.13801/j.cnki.fhclxb.20210129.003

    YUE Hongwei, CHEN Shujun, WU Peicheng, et al. Bamboo-based carbon fibers/MoS2 composite as an anode material for lithium ion batteries[J]. Acta Materiae Compositae Sinica,2021,38(11):3590-3597(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210129.003
    [2] 伍涛, 彭希林. 黄豆渣基多孔碳在超级电容器中的应用研究进展[J]. 轻工标准与质量, 2020(2):120-122. doi: 10.19541/j.cnki.issn1004-4108.2020.02.024

    WU Tao, PENG Xilin. Research progress on application of soybean dregs based porous carbon in supercapacitor[J]. Light Industry Standard & Quality,2020(2):120-122(in Chinese). doi: 10.19541/j.cnki.issn1004-4108.2020.02.024
    [3] 张春艳, 余浩, 潘乐. 绿茶渣基生物质碳材料的制备及其在锂电负极材料中的应用[J]. 黄山学院学报, 2019, 21(5):31-34.

    ZHANG Chunyan, YU Hao, PAN Le. Preparation of green tea residue based biomass carbon material and its application in lithium anode material[J]. Journal of Huangshan University,2019,21(5):31-34(in Chinese).
    [4] 刘建华. 葵花盘与海带活性炭制备及在重金属吸附/锂离子电池负极材料/电催化氧化方面应用[D]. 合肥: 合肥工业大学, 2019.

    LIU Jianhua. Preparation of sunflower disk and kelp activated carbon and its application in heavy metal adsorption/anode material for lithium ion battery/electrocatalytic oxidation[D]. Hefei: Hefei University of Technology, 2019(in Chinese).
    [5] 王守疆, 王孝恩, 东玉武. 氯化钙活化法从玉米芯生产活性炭[J]. 山东化工, 1994(1):16-17.

    WANG Shoujiang, WANG Xiaoen, DONG Yuwu. Production of activated carbon from corn cob by calcium chloride activation method[J]. Shandong Chemical Industry,1994(1):16-17(in Chinese).
    [6] 朱留凯, 昌莹鸽, 种元辉, 等. 生物质活性炭的改性方法研究进展[J]. 应用化工, 2021, 50(7):1900-1904. doi: 10.3969/j.issn.1671-3206.2021.07.035

    ZHU Liukai, CHANG Yingge, ZHONG Yuanhui, et al. Research progress on modification methods of biomass activated carbon[J]. Applied Chemical Industry,2021,50(7):1900-1904(in Chinese). doi: 10.3969/j.issn.1671-3206.2021.07.035
    [7] 邵将, 刘铭瑄, 孙宇杭. 利用花生壳化学活化法制备活性炭的研究[J]. 辽宁化工, 2018, 47(8):736-738. doi: 10.3969/j.issn.1004-0935.2018.08.004

    SHAO Jiang, LIU Mingxuan, SUN Yuhang. Preparation of activated carbon by chemical activation of peanut shell[J]. Liaoning Chemical Industry,2018,47(8):736-738(in Chinese). doi: 10.3969/j.issn.1004-0935.2018.08.004
    [8] 牛树章, 吴思达, 吕伟. 一步硬模板法制备层次孔炭及其在锂硫电池中的应用[J]. 新型炭材料, 2017, 32(4):289-296. doi: 10.1016/S1872-5805(17)60123-9

    NIU Shuzhang, WU Sida, LV Wei. Preparation of layered porous carbon by one-step hard template method and its application in lithium sulfur battery[J]. Novel Carbon Materials,2017,32(4):289-296(in Chinese). doi: 10.1016/S1872-5805(17)60123-9
    [9] 普孝钦. 软模板法合成介孔碳材料的研究进展[J]. 内蒙古石油化工, 2018, 44(4):26-28.

    PU Xiaoqin. Research progress in synthesis of mesoporous carbon materials by soft template method[J]. Inner Mongolia Petrochemical Industry,2018,44(4):26-28(in Chinese).
    [10] 杨丽娟. 生物质活性炭的制备及应用发展研究[J]. 黑龙江科学, 2018, 9(18):44-45. doi: 10.3969/j.issn.1674-8646.2018.18.018

    YANG Lijuan. Preparation and application of biomass activated carbon[J]. Science China,2018,9(18):44-45(in Chinese). doi: 10.3969/j.issn.1674-8646.2018.18.018
    [11] 李纯. 玉米秸秆基生物质碳材料的制备及其电化学性能研究[D]. 长春: 吉林大学, 2018.

    LI Chun. Preparation and electrochemical performance of biomass carbon materials based on corn straw[D]. Changchun: Jilin University, 2018(in Chinese).
    [12] 何健威. 多羰基聚酰亚胺电极材料的电化学性能及热性能研究[D]. 武汉: 武汉理工大学, 2020.

    HE Jianwei. Electrochemical and thermal properties of polycarbonyl polyimide electrode materials[D]. Wuhan: Wuhan University of Technology, 2020(in Chinese).
    [13] 朱志文, 郭贤慧. 羰基化合物作为有机电极材料在钠离子电池中的研究进展[J]. 河南化工, 2019, 36(4):9-12.

    ZHU Zhiwen, GUO Xianhui. Research progress of carbonyl compounds as organic electrode materials in sodium ion battery[J]. Henan Chemical Industry,2019,36(4):9-12(in Chinese).
    [14] 陈昊月, 吕林泽, 王艳. 羧基个数对共轭羰基化合物储锂性能的影响研究[J]. 中国新技术新产品, 2021(2):4-8. doi: 10.3969/j.issn.1673-9957.2021.02.002

    CHEN Haoyue, LV Linze, WANG Yan. Effect of carboxyl number on lithium storage performance of conjugated carbonyl compounds[J]. China New Technology and New Products,2021(2):4-8(in Chinese). doi: 10.3969/j.issn.1673-9957.2021.02.002
    [15] 徐勇. 含氧共轭双键化合物的设计合成及其作为锂/钠离子电池负极材料的性能研究[D]. 赣州: 江西理工大学, 2020.

    XU Yong. Design and synthesis of oxygen-containing conjugated double bond compounds and their properties as anode materials for lithium/sodium ion batteries[D]. Ganzhou: Jiangxi University of Science and Technology, 2020(in Chinese).
    [16] 罗路, 邓剑平, 罗凌聪, 等. 豆壳基炭材料的响应面优化设计及电化学特性[J]. 农业工程学报, 2021, 37(10): 277-283.

    LUO Lu, DENG Jianping, LUO Lingcong, et al. Optimization design of response surface and electrochemical properties of bean shell based carbon materials[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(10): 277-283(in Chinese).
    [17] ZAWA T A, ADITYA F T, SHUTO K, et al. Improving the performance of Li-ion battery carbon anodes by in-situ immobilization of SiOx nanoparticles[J]. Materials Research Bulletin,2019,112:16-21. doi: 10.1016/j.materresbull.2018.11.044
    [18] 王建波. 大豆秸秆纤维素和半纤维素含量近红外检测模型研究与建立[D]. 哈尔滨: 东北农业大学, 2016.

    WANG Jianbo. Research and establishment of near infrared detection model for cellulose and hemicellulose content in soybean straw[D]. Harbin: Northeast Agricultural University, 2016(in Chinese).
    [19] 谢潇. 氮气吸附法在测定材料比表面积和孔径分布方面的应用原理[J]. 科技与创新, 2019(9):7-8, 12.

    XIE Xiao. Application principle of nitrogen adsorption method in determination of specific surface area and pore size distribution of materials[J]. Science and Technology and Innovation,2019(9):7-8, 12(in Chinese).
    [20] 明晶. 几种矿物药的X射线衍射、拉曼光谱及近红外光谱法鉴别研究[D]. 武汉: 湖北中医药大学, 2018.

    MING Jing. Identification of several mineral drugs by X-ray diffraction, Raman spectroscopy and near infrared spectroscopy[D]. Wuhan: Hubei University of Chinese Medicine, 2018(in Chinese).
    [21] 晏鹏. 生物质衍生碳基材料的制备及其电化学储能研究[D]. 镇江: 江苏科技大学, 2020.

    YAN Peng. Preparation and electrochemical energy storage of biomass-derived carbon-based materials[D]. Zhenjiang: Jiangsu University of Science and Technology, 2020(in Chinese).
    [22] 陈沿宏, 徐一刚, 马强. 碳纳米管及其在锂离子电池中的应用探析[J]. 轻工科技, 2021, 37(1):37-38.

    CHEN Yanhong, XU Yigang, MA Qiang. Carbon nanotubes and their application in lithium ion battery[J]. Light Industry Science and Technology,2021,37(1):37-38(in Chinese).
    [23] 关中相. 汉麻秸秆基生物质碳用于锂离子电池负极及其电化学性能研究[D]. 长春: 吉林大学, 2020.

    GUAN Zhongxiang. Study on the anode and electrochemical performance of lithium ion battery based on Hemp straw biomass carbon[D]. Changchun: Jilin University, 2020(in Chinese).
    [24] ZHANG X, HUANG Q Y, ZHANG M, et al. Pine wood-derived hollow carbon fibers@NiO@rGO hybrids as sustainable aodes for lithium-ion batteries[J]. Journal of Alloys and Compounds,2020,822:153718. doi: 10.1016/j.jallcom.2020.153718
    [25] 孟伟巍. 基于金属钛的钛酸锂负极材料制备及电化学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    MENG Weiwei. Preparation and electrochemical properties of lithium titanate anode materials based on titanium[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
    [26] LI C, ZHANG Y Z, LIN C H, et al. Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries[J]. Journal of Materials Chemistry A,2014,2(25):9684-9690. doi: 10.1039/C4TA00501E
    [27] WANG J C, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Che-mistry,2012,22(45):23710-23725. doi: 10.1039/C2JM34066F
    [28] HWANG Y J, JEONG S K, NAHM K S, et al. Pyrolytic carbon derived from coffee shells as anode materials for lithium batteries[J]. Journal of Physics & Chemistry of Solids,2007,68(2):182-188. doi: 10.1016/j.jpcs.2006.10.007
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  878
  • HTML全文浏览量:  508
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-15
  • 修回日期:  2021-11-12
  • 录用日期:  2021-11-19
  • 网络出版日期:  2021-11-30
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回