留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含富树脂缺陷碳纤维/环氧树脂复合材料拉伸性能及失效机制

葛立立 俞鸣明 方琳 刘雪强 任慕苏 孙晋良

葛立立, 俞鸣明, 方琳, 等. 含富树脂缺陷碳纤维/环氧树脂复合材料拉伸性能及失效机制[J]. 复合材料学报, 2022, 39(10): 4961-4971. doi: 10.13801/j.cnki.fhclxb.20211116.004
引用本文: 葛立立, 俞鸣明, 方琳, 等. 含富树脂缺陷碳纤维/环氧树脂复合材料拉伸性能及失效机制[J]. 复合材料学报, 2022, 39(10): 4961-4971. doi: 10.13801/j.cnki.fhclxb.20211116.004
GE Lili, YU Mingming, FANG Lin, et al. Tensile properties and failure mechanism of carbon fiber reinforced epoxy composite with resin rich defects[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4961-4971. doi: 10.13801/j.cnki.fhclxb.20211116.004
Citation: GE Lili, YU Mingming, FANG Lin, et al. Tensile properties and failure mechanism of carbon fiber reinforced epoxy composite with resin rich defects[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4961-4971. doi: 10.13801/j.cnki.fhclxb.20211116.004

含富树脂缺陷碳纤维/环氧树脂复合材料拉伸性能及失效机制

doi: 10.13801/j.cnki.fhclxb.20211116.004
基金项目: 上海市优秀学术/技术带头人计划(20XD1434300);广东省重点研发计划(2019B010929001)
详细信息
    通讯作者:

    俞鸣明,博士,副研究员,博士生导师,研究方向为碳纤维增强复合材料  E-mail: mmyu@shu.edu.cn

  • 中图分类号: TB332

Tensile properties and failure mechanism of carbon fiber reinforced epoxy composite with resin rich defects

  • 摘要: 对含有因局部纤维断裂形成的富树脂缺陷的碳纤维/环氧树脂复合材料拉伸性能进行研究,分析缺陷位置与试样拉伸性能的对应关系发现:当富树脂缺陷大小相同位置不同,拉伸强度从高到低分别是:缺陷位于试样1/3处,缺陷位于试样几何中心时,缺陷位于试样1/2处的边缘时。当缺陷位于同一位置时,拉伸强度随缺陷尺寸的增大而降低。通过计算机断层扫描技术(CT)检测缺陷实际尺寸位置,采用有限元仿真技术建立含缺陷的碳纤维/环氧树脂复合材料拉伸强度性能预测模型,预测结果与实验值的误差小于10%,说明了该有限元模型的可靠性,并结合模拟结果分析复合材料的失效机制。

     

  • 图  1  碳纤维/环氧树脂(CF/EP)复合材料中富树脂缺陷形貌:(a) 富树脂处截面显微图;(b) 富树脂缺陷SEM图像

    Figure  1.  Morphology of resin-rich defect in carbon fiber reinforced epoxy (CF/EP) composite: (a) Section micrograph of resin-rich defect; (b) SEM image of resin-rich defect

    图  2  (a) CF/EP复合材料中缺陷的计算机断层扫描(CT)正视图与俯视图;(b)缺陷裁剪设计示意图

    Figure  2.  (a) Front and top view of computed tomography (CT) scan of defects in CF/EP composite; (b) Schematic design of defect cutting

    图  3  CF/EP复合材料中缺陷尺寸CT扫描结果与设计值:(a) 缺陷孔径CT检测结果与设计值;(b) 缺陷孔厚CT检测结果与设计值;(c) 缺陷埋深CT检测结果与设计值;(d) 缺陷尺寸CT检测结果与设计值的误差

    Figure  3.  CT scanning results and design values of defect size in CF/EP composite: (a) CT detection results and design values of defect diameter; (b) CT detection results and design values of defect hole thickness; (c) CT detection results and design value of defect buried depth; (d) Error between CT detection result and design value of defect size

    图  4  粘贴加强片的CF/EP复合材料拉伸试样

    Figure  4.  Tensile samples of CF/EP composite with stiffener attached

    图  5  CF/EP复合材料2#试样有限元模型图

    Figure  5.  Finite element model diagram of 2# sample of CF/EP composite

    t—Thickness; p1-p15—Number of plies

    图  6  CF/EP复合材料1#~7#试样拉伸强度降低率

    Figure  6.  Reduction rate of tensile strength of 1#-7# sample of CF/EP composite

    图  7  含缺陷CF/EP复合材料拉伸强度实验值和模拟值:(a) 1#试样实验结果与模拟结果的位移-载荷曲线;(b) 1#~7#试样拉伸强度实验值和模拟值及实验值和模拟值之间的误差

    Figure  7.  Experimental and simulated values of tensile strength of CF/EP composite with defects: (a) Displacement-load curve of 1# sample experimental results and simulated results; (b) Experimental value and simulated value of tensile strength of sample 1#-7# and error between them

    图  8  CF/EP复合材料1#~7#试样缺陷位置与断裂位置示意图

    Figure  8.  Schematic diagram of defect location and fracture location of 1#-7# sample of CF/EP composite

    图  9  CF/EP复合材料1#~7#试样拉伸破坏模式

    Figure  9.  Tensile failure mode of 1#-7# sample of CF/EP composite

    图  10  CF/EP复合材料2#试样拉伸断口SEM图像:((a)~(d)) 距缺陷分别为0.5 mm、1.5 mm、2 mm和2.5 mm的4个位置的SEM图像;((e), (f)) 图10(a)~10(c) 中横向纤维断裂和纤维束拔出断裂SEM图像;((g), (h)) 图10(d)中横向纤维处与轴向纤维处的SEM图像

    Figure  10.  SEM images of tensile fracture of 2# sample of CF/EP composite: ((a)~(d)) Four positions with a distance of 0.5 mm, 1.5 mm, 2 mm and 2.5 mm from the defect, respectively; ((e), (f)) Transverse fiber fracture and fiber bundle pull-out fracture in Fig.10(a)~10(c); ((g), (h)) Transverse fiber and the axial fiber in Fig.10(d)

    表  1  CF/EP复合材料1#~7#试样中缺陷描述和各试样的图标

    Table  1.   Description of defects in 1#-7# sample of CF/EP composite and icons of each sample

    NumberingDefect descriptionDefect diagram
    1#A circular defect of R=2 mm at the geometric center of the sample
    2#A circular defect of R=4 mm at the geometric center of the sample
    3#Semi-circular defect of R=4 mm at the center of one side of the sample
    4#A circular defect of R=4 mm at the center of one side of the sample
    5#A circular defect of R=2 mm located at 1/3 of the sample
    6#A circular defect of R=4 mm located at 1/3 of the sample
    7#No defects
    Note: R—Radius.
    下载: 导出CSV

    表  2  环氧树脂模拟参数

    Table  2.   Simulation parameters of epoxy resin

    PropertyValue
    Young’s modulus/GPa3.78
    Poisson’s ratio0.38
    Tensile strength/MPa80
    Compressive strength/MPa247
    Shear strength/MPa58
    下载: 导出CSV

    表  3  环氧树脂塑性段数据

    Table  3.   Data of plastic section of epoxy resin

    Yield stress/GPaPlastic strain
    10.199770
    20.297680.0024741
    30.39560.01144
    40.501670.32359
    50.60230.080176
    60.697490.17182
    70.798120.32922
    80.904190.59919
    90.955870.79942
    101.00211.0046
    下载: 导出CSV

    表  4  CF/EP复合材料模拟参数

    Table  4.   Simulation parameters of CF/EP composite

    PropertyValue
    Meridional Young's modulus E1/GPa68
    Latitudinal Young's modulus E2/GPa66
    Transverse Young's modulus E3/GPa42
    Poisson's ratio0.25
    In-plane shear modulus G12=G13/GPa5.4
    Out-plane shear modulus G23/GPa4.5
    Longitudinal tensile strength/MPa686
    Longitudinal compressive strength/MPa401
    Transverse tensile strength/MPa610
    Transverse compressive strength/MPa400
    Longitudinal shear strength/MPa117
    Transverse shear strength/MPa117
    下载: 导出CSV

    表  5  含缺陷CF/EP复合材料拉伸强度实验值与模拟值

    Table  5.   Experimental and simulated values of tensile strength of CF/EP composite with defects

    Numbering1#2#3#4#5#6#7#
    Experimental tensile strength/MPa644.5576.8668.3598.2638.7478.7697.1
    Simulated tensile strength/MPa693.1612.9717.6648.1708.1507.4742.8
    下载: 导出CSV

    表  6  CF/EP复合材料1#~7#试样应力-应变分布云图

    Table  6.   Stress and strain distribution patterns of 1#-7# sample of CF/EP composite

    Defect diagram
    Stress and strain distribution pattern
    Stress distribution
    Strain distribution
    Stress distribution
    Strain distribution
    Stress distribution
    Strain distribution
    Stress distribution
    Strain distribution
    Stress distribution
    Strain distribution
    Stress distribution
    Strain distribution
    Stress distribution
    Strain distribution
    下载: 导出CSV
  • [1] OUYANG T, SUN W, GUAN Z D, et al. Experimental study on delamination growth of stiffened composite panels in compression after impact[J]. Composite Structures,2018,206:791-800. doi: 10.1016/j.compstruct.2018.08.080
    [2] HU H T, KE L S. Constitutive modelling of composite laminates under uniaxial compression[J]. Chinese Journal of Aeronautics,2019,32(4):938-947. doi: 10.1016/j.cja.2019.02.003
    [3] WANG K K, ZHAO L B, HONG H M, et al. Parameter studies and evaluation principles of delamination damage in laminated composites[J]. Chinese Journal of Aeronautics,2021,34(7):62-72. doi: 10.1016/j.cja.2020.10.022
    [4] TOWSYFYAN H, BIGURI A, BOARDMAN R, et al. Suc cesses and challenges in non-destructive testing of aircraft composite structures[J]. Chinese Journal of Aeronautics,2020,33(3):771-791. doi: 10.1016/j.cja.2019.09.017
    [5] MAURYA M, SADARANG J, PANIGRAHI I, et al. Detection of delamination in carbon fibre reinforced composite using vibration analysis and artificial neural network[J]. Materials Today: Proceedings,2022,49(Part 2):517-522. doi: 10.1016/j.matpr.2021.03.378
    [6] JOHRI N, CHANDRA KANDPAL B, KUMAR N, et al. Effect of ply thickness and orientation on fatigue delamination of laminated composites using cohesive zone model[J]. Materials Today: Proceedings,2021,46(Part 20):11040-11045. doi: 10.1016/j.matpr.2021.02.156
    [7] IPEK G, ARMAN Y, CELIK A. The effect of delamina tion size and location to buckling behavior of composite mate-rials[J]. Composites Part B: Engineering,2018,155:69-76. doi: 10.1016/j.compositesb.2018.08.009
    [8] HU H, CAO D, CAO Z, et al. Experimental and numerical investigations of wrinkle effect on failure behavior of curved composite laminates[J]. Composite Structures,2021,261:113541. doi: 10.1016/j.compstruct.2021.113541
    [9] MEHDIKHANI M, GORBATIKH L, VERPOEST I, et al. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance[J]. Journal of Composite Materials,2019,53(12):1579-1669. doi: 10.1177/0021998318772152
    [10] KOUTSONAS S. Modelling race-tracking variability of resin rich zones on 90° composite 2.2 twill fibre curved plate[J]. Composites Science and Technology,2018,168:448-459. doi: 10.1016/j.compscitech.2018.08.001
    [11] HUANG F C, PANG X F, ZHU F L, et al. Transverse mechanical properties of unidirectional FRP including resin-rich areas[J]. Computational Materials Science,2021,198:110701. doi: 10.1016/j.commatsci.2021.110701
    [12] GE L, LI H M, ZHENG H Y, et al. Two-scale damage failure analysis of 3D braided composites considering pore defects[J]. Composite Structures,2021,260:113556. doi: 10.1016/j.compstruct.2021.113556
    [13] GHAYOOR H, MARSDEN C C, HOA S V, et al. Numerical analysis of resin-rich areas and their effects on failure initiation of composites[J]. Composites Part A: Applied Science and Manufacturing,2019,117:125-133. doi: 10.1016/j.compositesa.2018.11.016
    [14] AHMADIAN H, YANG M, SOGHRATI S. Effect of resin-rich zones on the failure response of carbon fiber reinforced polymers[J]. International Journal of Solids and Structures,2020,188-189:74-87. doi: 10.1016/j.ijsolstr.2019.10.004
    [15] AL-SHAWK A, TANABI H, SABUNCUOGLU B. Investigation of stress distributions in the resin rich region and failure behavior in glass fiber composites with microvascular channels under tensile loading[J]. Composite Structures,2018,192:101-114. doi: 10.1016/j.compstruct.2018.02.061
    [16] WANG P, LEI H, ZHU X, et al. Investigation on the mechanical properties of epoxy resin with void defects using digital image correlation and imagebased finite element method[J]. Polymer Testing,2018,72:223-231. doi: 10.1016/j.polymertesting.2018.10.025
    [17] GE L, LI H, ZHONG J, et al. Micro-CT based trans-scale damage analysis of 3D braided composites with pore defects[J]. Composites Science and Technology,2021,211:108830. doi: 10.1016/j.compscitech.2021.108830
    [18] XIE N, SMITH R A, MUKHOPADHYAY S, et al. A numerical study on the influence of composite wrinkle defect geometry on compressive strength[J]. Materials & Design,2018,140:7-20. doi: 10.1016/j.matdes.2017.11.034
    [19] KOLLNER A, KASHTALYAN M, GUZ I, et al. On the in teraction of delamination buckling and damage growth in crossply laminates[J]. International Journal of Solids and Structures,2020,202:912-928. doi: 10.1016/j.ijsolstr.2020.05.035
    [20] PRANAVI D, RAJAGOPAL A, REDDY J N. Interaction of anisotropic crack phase field with interface cohe-sive zone model for fiber reinforced composites[J]. Composite Structures,2021,270:114038. doi: 10.1016/j.compstruct.2021.114038
    [21] 中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Test method for tensile properties of oriented fiber reinforced polymer matrix composites: GB/T 3354—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  1064
  • HTML全文浏览量:  633
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-15
  • 修回日期:  2021-10-18
  • 录用日期:  2021-11-10
  • 网络出版日期:  2021-11-17
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回