留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene/SA凝胶微球的制备及对U(VI)的吸附性能

李仕友 胡俊毅 贺俊钦 汪杨 乔记帅 王国华

李仕友, 胡俊毅, 贺俊钦, 等. MXene/SA凝胶微球的制备及对U(VI)的吸附性能[J]. 复合材料学报, 2022, 39(10): 4868-4878. doi: 10.13801/j.cnki.fhclxb.20211116.003
引用本文: 李仕友, 胡俊毅, 贺俊钦, 等. MXene/SA凝胶微球的制备及对U(VI)的吸附性能[J]. 复合材料学报, 2022, 39(10): 4868-4878. doi: 10.13801/j.cnki.fhclxb.20211116.003
LI Shiyou, HU Junyi, HE Junqin, et al. Preparation of MXene/SA gel microspheres and its adsorption performance for U(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4868-4878. doi: 10.13801/j.cnki.fhclxb.20211116.003
Citation: LI Shiyou, HU Junyi, HE Junqin, et al. Preparation of MXene/SA gel microspheres and its adsorption performance for U(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4868-4878. doi: 10.13801/j.cnki.fhclxb.20211116.003

MXene/SA凝胶微球的制备及对U(VI)的吸附性能

doi: 10.13801/j.cnki.fhclxb.20211116.003
基金项目: 国家自然科学基金(51904155);湖南省自然科学基金(2022JJ30490)
详细信息
    通讯作者:

    王国华,博士,副教授,硕士生导师,研究方向为放射性污染治理与资源化 E-mail: wghcsu@163.com

  • 中图分类号: TB333

Preparation of MXene/SA gel microspheres and its adsorption performance for U(VI)

  • 摘要: 为了提高纳米材料MXene的吸附能力和可回收性,采用离子交联法将海藻酸钠(SA)和MXene混合,使Ti3C2Tx MXene纳米材料固定在SA凝胶基质上,经冷冻干燥后制备了MXene/SA凝胶微球。通过SEM-EDS、FTIR和XPS对凝胶微球结构进行了表征,并考察了不同因素影响下MXene/SA凝胶微球对水溶液中铀(VI)的吸附特性,并探究了其循环再生能力。结果表明,MXene/SA凝胶微球对铀吸附过程遵循拟二级动力学和Langmuir等温吸附模型,说明该吸附主要为单分子层化学吸附,且热力学参数表明其吸附过程是一个自发吸热的过程。在pH为4,温度为298 K时,MXene/SA凝胶微球对铀的最大吸附量为126.82 mg·g−1,其主要吸附机制是离子交换与络合作用。更重要的是该凝胶微球经5次循环后,去除率仍然保持在90%以上,说明吸附剂具有回收再生利用性能,且不会造成水环境的二次污染。因此,MXene/SA凝胶微球吸附剂在修复放射性核素铀废水污染方面表现出巨大潜力。

     

  • 图  1  MXene/海藻酸钠(SA)凝胶微球主要制备步骤

    Figure  1.  Main preparation steps of MXene/sodium alginate (SA) gel microspheres

    图  2  Ti3C2Tx (a)、SA凝胶微球 (b)、MXene/SA凝胶微球吸附U(VI)前 (c) 和吸附后 (d) 的SEM图像;MXene/SA凝胶微球吸附U(VI)前 (e) 和吸附后 (f) 的EDS图谱

    Figure  2.  SEM images of Ti3C2Tx (a), SA gel microspheres (b), MXene/SA gel microspheres before (c) and after (d) adsorption; EDS patterns of MXene/SA gel microspheres before (e) and after (f) adsorption

    图  3  Ti3C2Tx、SA凝胶微球及MXene/SA凝胶微球吸附前后的FTIR图谱

    Figure  3.  FTIR spectra of Ti3C2Tx, SA gel microspheres and MXene/SA gel microspheres before and after adsorption

    图  4  MXene/SA和MXene/SA-U(VI)的全谱图 (a)、 U4f光谱图 (b)、 Ca2p光谱图 (c)、 C1s光谱图 (d)、 O1s光谱图 (e)

    Figure  4.  MXene/SA and MXene/SA-U(VI) full spectrum (a), U4f spectrum (b), Ca2p spectrum (c), C1s spectrum (d),O1s spectrum (e)

    图  5  不同配比MXene/SA吸附剂对U(VI)的吸附容量对比

    Figure  5.  Comparison of MXene/SA adsorption capacity of different ratio adsorbents for U(VI)

    图  6  (a) 不同pH值下U(VI)形态分布曲线图;(b) 不同pH值下MXene/SA对U(VI)吸附性能的影响; (c) 不同硝酸钠离子强度下对MXene/SA吸附U(VI)的影响

    Figure  6.  (a) U(VI) morphology distribution curves at different pH values; (b) Effect of MXene/SA on the adsorption performance of U(VI) at different pH values; (c) Effect of adsorption U(VI) of MXene/SA adsorbent under different sodium nitrate ionic strength

    C0—Initial U(VI) concentration

    图  7  不同MXene/SA投加量吸附U(VI)的影响

    Figure  7.  Influence of different MXene/SA dosage on the adsorption of U(VI)

    图  8  (a) 接触时间对MXene/SA凝胶微球吸附不同浓度U(VI)的影响;(b) 拟一级动力学模型拟合曲线; (c) 拟二级动力学模型拟合曲线;(d) 颗粒内扩散模型拟合曲线

    Figure  8.  (a) Influence of contact time on the adsorption of different concentrations of U(VI) by MXene/SA gel microspheres; (b) Quasi-first-order adsorption kinetic model fitting curves; (c) Quasi-second-order adsorption kinetic model fitting curves; (d) Intra-particle diffusion model fitting curves

    qt—Adsorption capacity at time t; qe—Equilibrium adsorption capacity; t—Adsorption time

    图  9  (a) MXene/SA吸附 U(VI)的非线性等温模型拟合;(b) lnKL与 1/T 的关系图

    Figure  9.  (a) Fitting of nonlinear isothermal model of MXene/SA adsorption of U(VI); (b) Relationship between lnKL and 1/T

    qe—Equilibrium adsorption capacity; Ce—Uranium concentration at adsorption equilibrium; KL—Langmuir coefficient related to the affinity of binding site; T—Temperature

    图  10  MXene/SA吸附剂循环再生实验

    Figure  10.  MXene/SA adsorbent cycle regeneration test

    表  1  MXene/SA凝胶微球对U(VI)的吸附动力学参数

    Table  1.   The adsorption kinetic parameters of U(VI) on MXene/SA gel microspheres

    C0/(mg·L−1)51015
    qe,exp/(mg·g−1)9.719.2828.5
    Pseudo-first-order model k1/min−1 0.018 0.016 0.014
    qe,cal/(mg·g−1) 9.851 19.426 28.509
    R2 0.877 0.853 0.975
    Pseudo-second-order model k2/min−1 0.002 0.001 0.001
    qe,cal/(mg·g−1) 11.072 21.966 32.783
    R2 0.997 0.995 0.996
    Intraparticle diffusion model k1p/(mg·(g·min0.5)−1) 0.872 1.745 2.459
    C1 −0.774 −2.069 −3.352
    R12 0.997 0.942 0.930
    k2p/(mg·(g·min0.5)−1) 0.126 0.529 1.010
    C2 7.746 11.207 11.764
    R22 0.720 0.665 0.963
    k3p/(mg·(g·min0.5)−1) 0.028 0.020 0.075
    C3 9.203 18.856 26.896
    R32 0.652 0.575 0.590
    Notes: qe,exp—Calculated amount of adsorption equilibrium; qe,cal—Actual amount of adsorption equilibrium; k1 and k2—First order rate constant and second order rate constant, respectively; kp1, kp2, kp3—Particle diffusion constant; R2—Correlation coefficient.
    下载: 导出CSV

    表  2  Langmuir和Freundlich吸附等温线模型的相关参数

    Table  2.   Related parameters of Langmuir and Freundlich adsorption isotherm simulation

    T/KLangmuir isothermFreundlich isotherm
    qmax/(mg·g−1)KL/(L·mg−1)R2KF/(L·mg−1)nR2
    288150.3820.2730.99438.1230.1470.991
    298154.3090.3730.98443.5810.2410.974
    308159.0310.5390.97557.3810.3000.963
    Notes: qmax—Adsorption capacity per unit mass of the adsorbent; KL—Langmuir coefficient related to the affinity of binding site; KF and n—Constants that are related to the adsorption capacity and the adsorption intensity, respectively.
    下载: 导出CSV

    表  3  MXene/SA吸附U(VI)的热力学参数

    Table  3.   Thermodynamic parameters of MXene/SA adsorption of U(VI)

    T/KlnKeΔG0/(kJ·mol−1)ΔH0/(kJ·mol−1)ΔS0/(J·(mol·K)−1)
    2883.59−8.6021.07103.18
    2983.95−9.79
    3084.16−10.65
    Notes: T—Thermodynamic temperature; Ke—Equilibrium constant at different temperatures; ΔH0—Standard enthalpy change; ΔG0—Standard free energy change; ΔS0—Standard entropy change.
    下载: 导出CSV
  • [1] XIE Y, CHEN C, REN X, et al. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation[J]. Progress in Materials Science,2019,103:180-234. doi: 10.1016/j.pmatsci.2019.01.005
    [2] WANG X, CHEN L, WANG L, et al. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides[J]. Science China Chemistry,2019,62(8):933-967. doi: 10.1007/s11426-019-9492-4
    [3] ZAHERI P, DAVARKHAH R. Selective separation of uranium from sulfuric acid media using a polymer inclusion membrane containing alamine336[J]. Chemical Papers,2020,74(8):2573-2581. doi: 10.1007/s11696-019-01029-9
    [4] ORREGO P, HERNANDEZ J, REYES A. Uranium and molybdenum recovery from copper leaching solutions using ion exchange[J]. Hydrometallurgy,2019,184:116-122. doi: 10.1016/j.hydromet.2018.12.021
    [5] OROZCO I, ROMERO M, LARA R, et al. Precipitation of uranium from alkaline liqueurs[J]. Materia (Rio de Janeiro),2018,23(2):e12008. doi: 10.1590/S1517-707620180002.0345
    [6] BERGER C, MARIE C, GUILLAUMONT D, et al. Extraction of uranium(VI) and plutonium(IV) with tetra-alkylcarbamides[J]. Solvent Extraction and Ion Exchange,2019,37(2):111-125. doi: 10.1080/07366299.2019.1630095
    [7] YU S, MA J, SHI Y, et al. Uranium(VI) adsorption on montmorillonite colloid[J]. Journal of Radioanalytical and Nu-clear Chemistry,2020,324(2):541-549. doi: 10.1007/s10967-020-07083-y
    [8] CHEN S, HU J, HAN S, et al. A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade[J]. Separation and Purification Technology,2020,251:117340. doi: 10.1016/j.seppur.2020.117340
    [9] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [10] ALHABEB M, MALESKI K, MATHIS T S, et al. Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene)[J]. Angewandte Chemie International Edition,2018,57(19):5444-5448. doi: 10.1002/anie.201802232
    [11] HAN M, YIN X, LI X, et al. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes[J]. ACS Applied Materials & Interfaces,2017,9(23):20038-20045. doi: 10.1021/acsami.7b04602
    [12] SHAHZAD A, RASOOL K, MIRAN W, et al. Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water[J]. ACS Sustainable Chemistry & Engineering,2017,5(12):11481-11488. doi: 10.1021/acssuschemeng.7b02695
    [13] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials,2017,2(2):16098. doi: 10.1038/natrevmats.2016.98
    [14] ZHANG Y J, ZHOU Z J, LAN J H, et al. Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene[J]. Applied Surface Science,2017,426:572-578. doi: 10.1016/j.apsusc.2017.07.227
    [15] HANTANASIRISAKUL K, GOGOTSI Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes)[J]. Advanced Materials,2018,30(52):1804779. doi: 10.1002/adma.201804779
    [16] WANG L, SONG H, YUAN L, et al. Efficient U(VI) reduction and sequestration by Ti2CTx MXene[J]. Environmental Science & Technology,2018,52(18):10748-10756. doi: 10.1021/acs.est.8b03711
    [17] POGREBNJAK A, SUKHODUB L, SUKHODUB L, et al. Composite material with nanoscale architecture based on bioapatite, sodium alginate and ZnO microparticles[J]. Ceramics International,2019,45(6):7504-7514. doi: 10.1016/j.ceramint.2019.01.043
    [18] JIAO C, XIONG J, TAO J, et al. Sodium alginate/graphene oxide aerogel with enhanced strength-toughness and its heavy metal adsorption study[J]. International Journal of Biological Macromolecules,2016,83:133-141. doi: 10.1016/j.ijbiomac.2015.11.061
    [19] 朱韵伊, 彭伟, 林泽慧, 等. MXene基水凝胶复合材料的研究进展[J]. 复合材料学报, 2021, 38(7):2010-2024. doi: 10.13801/j.cnki.fhclxb.20210302.004

    ZHU Yunyi, PENG Wei, LIN Zehui, et al. Research progress of MXene-based hydrogel composites[J]. Acta Materiae Compositae Sinica,2021,38(7):2010-2024(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210302.004
    [20] ZHANG T, ZHANG W, XI H, et al. Polydopamine functionalized cellulose-MXene composite aerogel with superior adsorption of methylene blue[J]. Cellulose,2021,28(7):4281-4293. doi: 10.1007/s10570-021-03737-6
    [21] SHAHZAD A, NAWAZ M, MOZTAHIDA M, et al. Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions[J]. Chemical Engineering Journal,2019,368:400-408. doi: 10.1016/j.cej.2019.02.160
    [22] FENG Y, WANG H, XU J, et al. Fabrication of MXene/PEI functionalized sodium alginate aerogel and its excellent adsorption behavior for Cr(VI) and Congo Red from aqueous solution[J]. Journal of Hazardous Materials,2021,416:125777. doi: 10.1016/j.jhazmat.2021.125777
    [23] ZHANG Z H, XU J Y, YANG X L. MXene/sodium alginate gel beads for adsorption of methylene blue[J]. Materials Chemistry and Physics,2021,260:124123. doi: 10.1016/j.matchemphys.2020.124123
    [24] 郭成, 郝军杰, 李明阳, 等. 海藻酸钠/聚乙烯亚胺凝胶球的合成及对Cr(VI)的吸附性能和机制[J]. 复合材料学报, 2021, 38(7):2140-2151. doi: 10.13801/j.cnki.fhclxb.20201015.003

    GUO Cheng, HAO Junjie, LI Mingyang, et al. Adsorption of Cr(VI) on porous sodium alginate/polyethyleneimine hydrogel beads and its mechanistic study[J]. Acta Materiae Compositae Sinica,2021,38(7):2140-2151(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201015.003
    [25] YI X, SUN F, HAN Z, et al. Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu(II) and U(VI) removal[J]. Ecotoxicology and Envi-ronmental Safety,2018,158:309-318. doi: 10.1016/j.ecoenv.2018.04.039
    [26] LIU H, ZHOU Y, YANG Y, et al. Synthesis of polyethylenimine/graphene oxide for the adsorption of U(VI) from aqueous solution[J]. Applied Surface Science,2019,471:88-95. doi: 10.1016/j.apsusc.2018.11.231
    [27] ZHANG W, WANG H, HU X, et al. Multicavity triethylenetetramine-chitosan/alginate composite beads for enhanced Cr(VI) removal[J]. Journal of Cleaner Production,2019,231:733-745. doi: 10.1016/j.jclepro.2019.05.219
    [28] SHAHZAD A, MOZTAHIDA M, TAHIR K, et al. Highly effective prussian blue-coated MXene aerogel spheres for selective removal of cesium ions[J]. Journal of Nuclear Materials,2020,539:152277. doi: 10.1016/j.jnucmat.2020.152277
    [29] JUN B M, JANG M, PARK C M, et al. Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater[J]. Nuclear Engineering and Technology,2020,52(6):1201-1207. doi: 10.1016/j.net.2019.11.020
    [30] ZHANG P, WANG L, DU K, et al. Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets[J]. Journal of Hazardous Materials,2020,396:122731. doi: 10.1016/j.jhazmat.2020.122731
    [31] 郑骁, 王学松, 陈光, 等. 离子强度和pH对针铁矿吸附水溶液中Cd(Ⅱ)的影响[J]. 环境工程, 2019, 37(7):119-123, 208. doi: 10.13205/j.hjgc.201907022

    ZHENG Xiao, WANG Xuesong, CHEN Guang, et al. Effect of ionic strength and pH on adsorption of Cd(Ⅱ) on Goethite from aqueous solution[J]. Environmental Engineering,2019,37(7):119-123, 208(in Chinese). doi: 10.13205/j.hjgc.201907022
    [32] 伍随意, 李仕友, 胡俊毅, 等. 聚乙烯亚胺改性磁性酵母复合材料去除铀(VI)的性能[J]. 复合材料学报, 2021, 38(9):3065-3075.

    WU Suiyi, LI Shiyou, HU Junyi, et al. Adsorption properties of polyethyleneimine modified magnetic yeast composites for uranium(VI)[J]. Acta Materiae Compositae Sinica,2021,38(9):3065-3075(in Chinese).
    [33] ZHANG W, SONG J, HE Q, et al. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal[J]. Journal of Hazardous Materials,2020,384:121445. doi: 10.1016/j.jhazmat.2019.121445
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1405
  • HTML全文浏览量:  522
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-16
  • 修回日期:  2021-10-27
  • 录用日期:  2021-10-31
  • 网络出版日期:  2021-11-17
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回