留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞艇用织物膜材单轴拉伸蠕变强度试验与模型

宋寅搏 陈务军 高成军 陈龙龙 王晓情 闫勇升

宋寅搏, 陈务军, 高成军, 等. 飞艇用织物膜材单轴拉伸蠕变强度试验与模型[J]. 复合材料学报, 2022, 39(10): 5041-5048. doi: 10.13801/j.cnki.fhclxb.20211116.001
引用本文: 宋寅搏, 陈务军, 高成军, 等. 飞艇用织物膜材单轴拉伸蠕变强度试验与模型[J]. 复合材料学报, 2022, 39(10): 5041-5048. doi: 10.13801/j.cnki.fhclxb.20211116.001
SONG Yinbo, CHEN Wujun, GAO Chengjun, et al. Uniaxial tensile creep experiment and creep model of fabric for airship structures[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 5041-5048. doi: 10.13801/j.cnki.fhclxb.20211116.001
Citation: SONG Yinbo, CHEN Wujun, GAO Chengjun, et al. Uniaxial tensile creep experiment and creep model of fabric for airship structures[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 5041-5048. doi: 10.13801/j.cnki.fhclxb.20211116.001

飞艇用织物膜材单轴拉伸蠕变强度试验与模型

doi: 10.13801/j.cnki.fhclxb.20211116.001
基金项目: 国家自然科学基金 (51778362)
详细信息
    通讯作者:

    陈务军,博士,教授,博士生导师,研究方向为超轻航空、宇航、近空间结构构造物分析理论与设计技术 E-mail: cwj@sjtu.edu.cn

  • 中图分类号: TB332

Uniaxial tensile creep experiment and creep model of fabric for airship structures

  • 摘要: 聚酯纤维织物类膜材因其轻质高强、耐候性好等特点常被用于飞艇结构的蒙皮材料,其在高应力水平下的蠕变失效行为决定飞艇结构长期安全性能,但目前尚未有相关的性能测试标准及研究。为研究此类膜材的蠕变性能,选用以Vectran纤维为基布材料的膜材在极限应力的85%、80%、75%、70%四组应力水平下进行单轴拉伸蠕变试验,分析了蠕变过程中膜材应变、模量及蠕变破坏时间等参数随应力水平的变化规律,并给出基于应力水平的蠕变强度包络线拟合公式;通过牛顿迭代法建立了参数化的四单元蠕变模型及蠕变破坏准则,可以较准确地反映材料在高应力水平下的蠕变破坏规律。

     

  • 图  1  Vectran-聚氟乙烯(PVF)织物膜材的细观结构

    Figure  1.  Mesostructure of Vectran-polyvinyl fluoride (PVF) fabric material

    图  2  Vectran-PVF膜材试样尺寸及试验方案

    Figure  2.  Configuration of Vectran-PVF fabric specimens and experimental scheme

    trupt—Maximum creep failure time; tmax—Creep tensile test time limit; Vconst—Loading velocity of creep tensile test; Fmax—Load retention of creep tensile test

    图  3  Vectran-PVF膜材蠕变应变曲线阶段划分

    Figure  3.  Stage division of Vectran-PVF fabric creep strain curve

    ε0—Initial strain; εc—Creep strain; A-B′-C′-D—Creep deformation curve of polymer membrane material

    图  4  各应力水平下的Vectran-PVF膜材试样应变值

    Figure  4.  Strain comparison of Vectran-PVF fabric specimens under various stress levels

    σu—Ultimate stress

    图  5  各应力水平下Vectran-PVF膜材试样的蠕变应变曲线

    Figure  5.  Creep strain curves of Vectran-PVF fabric specimens under various stress levels

    图  6  各应力水平下Vectran-PVF膜材试样的蠕变模量曲线

    Figure  6.  Creep modulus curves of Vectran-PVF fabric specimens under various stress levels

    图  7  基于应力水平的Vectran-PVF膜材蠕变强度包络线

    Figure  7.  Envelope of Vectran-PVF fabric creep strength based on stress levels

    图  8  基于蠕变强度包络线的Vectran-PVF膜材试样寿命预测

    Figure  8.  Life prediction based on Vectran-PVF fabric creep strength envelope

    a-b-c-d—Creep path at stress level 78%σu

    图  9  宏观和细观尺度的Vectran-PVF膜材试样破坏形态

    Figure  9.  Macroscopic and mesoscopic views of Vectran-PVF fabric specimen failure

    图  10  聚合物的四单元蠕变模型

    Figure  10.  Common creep model of polymers based on combination of spring elements and dashpot elements

    ε1—Universal elastic strain; ε2—High elastic strain; ε3 —Viscosity strain; E1, E2—Elastic modulus of different spring elements in the model; η2, η3—Viscosity coefficient of different sticky pot units in the model; σc—Load holding stress value; t—Time

    图  11  蠕变模型与Vectran-PVF膜材蠕变试验结果对比

    Figure  11.  Comparison between Vectran-PVF fabric creep model and experimental results

    表  1  Vectran-PVF膜材蠕变试验设备及参数

    Table  1.   Instruments parameters of Vectran-PVF fabric creep testing

    Test equipmentMeasuring rangeAccuracyError
    Electronic universal testing machine0-5000 N0.1 N±0.5%
    Displacement meter0-800 mm0.008 mm±1%
    Thickness gauge0-12.7 mm0.001 mm±1%
    下载: 导出CSV

    表  2  Vectran-PVF膜材模型预测带与试验结果的极限应变值对比

    Table  2.   Comparison of ultimate strain values of Vectran-PVF fabric between model prediction zone and test results

    StressUltimate strain/%Error/%
    ExperimentCreep model
    85%σu2.402.33-2.550.0
    80%σu2.332.29-2.370.0
    75%σu2.222.04-2.105.4
    70%σu2.111.78-1.8910.4
    下载: 导出CSV
  • [1] CHEN Y, LI S, DING K, et al. Investigation of tear strength of an airship envelope fabric by theoretical method and uniaxial tear test[J]. Journal of Engineered Fibers and Fabrics,2019,14:1-11. doi: https://doi.org/10.1177/1558925019879295
    [2] SHI T, HU J, CHEN W, et al. A refined numerical model for determining inflation-burst behavior of composite membrane structures[J]. Polymer Testing,2020,81:106123. doi: 10.1016/j.polymertesting.2019.106123
    [3] SHI T, CHEN W, GAO C, et al. Investigation of mechanical behavior of weld seams of composite envelopes in airship structures[J]. Composite Structures,2018,201:1-12. doi: 10.1016/j.compstruct.2018.06.019
    [4] QIU Z, CHEN W, GAO C, et al. Initial configuration and nonlinear mechanical analysis of stratospheric nonrigid airship envelope[J]. Journal of Aerospace Engineering,2019,32(2):04018155. doi: 10.1061/(ASCE)AS.1943-5525.0000989
    [5] SUN G, LI L, XUE S, et al. Mechanical properties of polyester-coated fabric membrane material subjected to uniaxial loading at elevated temperatures[J]. Journal of Materials in Civil Engineering,2021,33(7):04021169. doi: 10.1061/(ASCE)MT.1943-5533.0003771
    [6] ZHAO B, CHEN W. Rate-dependent mechanical properties and elastic modulus of ETFE foils used in inflated forming of transparency air-inflated cushion membrane structures[J]. Engineering Structures,2021,227:111404. doi: 10.1016/j.engstruct.2020.111404
    [7] HU J, LI Y, CHEN W, et al. A combined loading-creep model of ETFE foils for flat-patterning structures[J]. Thin-Walled Structures,2020,157:106976. doi: 10.1016/j.tws.2020.106976
    [8] CHEN B, GUO L, ZHANG W, et al. Compressive creep behavior of cellulose fiber reinforced concrete[J]. IOP Conference Series: Earth and Environmental Science,2021,825(1):012022. doi: 10.1088/1755-1315/825/1/012022
    [9] 宋彦琦, 李小龙, 马宏发, 等. 基于有损伤体元件的广义Kelvin模型蠕变全过程探究[J]. 应用数学和力学, 2021, 42(6): 637-644.

    SONG Yanqi, LI Xiaolong, MA Hongfa, et al. Research on the whole creep process of the generalized kelvin model based on damaged body elements[J]. Applied Mathematics & Mechanics, 2021, 42(6): 637-644(in Chinese).
    [10] LI Y, WU M. Uniaxial creep property and viscoelastic-plastic modelling of ethylene tetrafluoroethylene (ETFE) foil[J]. Mechanics of Time-Dependent Materials,2015,19(1):21-34. doi: 10.1007/s11043-014-9248-2
    [11] FAIRHURST A, THOMMEN M, RYTKA C. Comparison of short and long term creep testing in high performance polymers[J]. Polymer Testing,2019,78:105979. doi: 10.1016/j.polymertesting.2019.105979
    [12] DUAN X, YUAN H, TANG W, et al. A phenomenological primary-secondary-tertiary creep model for polymer-bonded composite materials[J]. Polymers,2021,13(14):2353. doi: 10.3390/polym13142353
    [13] ZHANG Y, LIU X, YIN B, et al. A nonlinear fractional viscoelastic-plastic creep model of asphalt mixture[J]. Polymers,2021,13(8):1278. doi: 10.3390/polym13081278
    [14] LIU W, ZHANG S. An improved unsteady creep model based on the time dependent mechanical parameters[J]. Mechanics of Advanced Materials and Structures,2021,28(17):1838-1848. doi: 10.1080/15376494.2020.1712624
    [15] 全国纺织品标准化技术委员会基础标准分技术委员会. 纺织品 织物拉伸性能 第1部分: 断裂强力和断裂伸长率的测定(条样法): GB/T 3923.1—2013[S]. 北京: 中国标准出版社, 2013.

    Basic Standards Sub Technical Committee of National Textile Standardization Technical Committee. Textiles—Tensile properties of fabrics—Part 1: Determination of maximum force and elongation at maximum force using the strip method: GB/T 3923.1—2013[S]. Beijing: Standards Press of China, 2013(in Chinese).
    [16] 中华人民共和国工业和信息化部. 膜结构用涂层织物拉伸蠕变性能试验方法: FZ/T 60037—2013[S]. 北京: 中国标准出版社, 2013.

    Ministry of Industry and Information Technology of the People's Republic of China. Coated fabrics for membrane structures—Test method for tensile creep: FZ/T 60037—2013[S]. Beijing: Standards Press of China, 2013(in Chinese).
    [17] American Society for Testing and Materials Committee. Test methods for tensile, compressive, and flexural creep and creep-rupture of plastics: ANSI/ASTM D2990—2009[S]. West Conshohocken: ASTM International, 2009.
    [18] DANG H, ZHAO Z, LIU P, et al. A new analytical method for progressive failure analysis of two-dimensional triaxially braided composites[J]. Composites Science and Technology,2020,186:107936. doi: 10.1016/j.compscitech.2019.107936
    [19] HU J, CHEN W, ZHAO B, et al. Uniaxial tensile mechanical properties and model parameters determination of ethylene tetrafluoroethylene (ETFE) foils[J]. Construction and Building Materials,2015,75:200-207. doi: 10.1016/j.conbuildmat.2014.10.017
    [20] WANG X Y, WANG X, ZHANG X C, et al. Creep damage characterization of UNS N10003 alloy based on a numerical simulation using the Norton creep law and Kachanov-Rabotnov creep damage model[J]. Nuclear Science and Techniques,2019,30(4):1-9. doi: 10.1007/s41365-019-0586-2
    [21] SAMADI S, JIN S, HARMUTH H. Combined damaged elasticity and creep modeling of ceramics with wedge splitting tests[J]. Ceramics International,2021,47(18):25846-25853. doi: 10.1016/j.ceramint.2021.05.315
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  686
  • HTML全文浏览量:  393
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 修回日期:  2021-10-26
  • 录用日期:  2021-11-08
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回