留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TaC对Ti(C0.7N0.3)基金属陶瓷的物相、显微结构和力学性能的影响

劳振勇 郭伟明 罗展鹏 谭大旺 林华泰

劳振勇, 郭伟明, 罗展鹏, 等. TaC对Ti(C0.7N0.3)基金属陶瓷的物相、显微结构和力学性能的影响[J]. 复合材料学报, 2022, 39(10): 4927-4934. doi: 10.13801/j.cnki.fhclxb.20211115.004
引用本文: 劳振勇, 郭伟明, 罗展鹏, 等. TaC对Ti(C0.7N0.3)基金属陶瓷的物相、显微结构和力学性能的影响[J]. 复合材料学报, 2022, 39(10): 4927-4934. doi: 10.13801/j.cnki.fhclxb.20211115.004
LAO Zhenyong, GUO Weiming, LUO Zhanpeng, et al. Effect of TaC on phase, microstructure and mechanical properties of Ti(C0.7N0.3)-based cermets[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4927-4934. doi: 10.13801/j.cnki.fhclxb.20211115.004
Citation: LAO Zhenyong, GUO Weiming, LUO Zhanpeng, et al. Effect of TaC on phase, microstructure and mechanical properties of Ti(C0.7N0.3)-based cermets[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4927-4934. doi: 10.13801/j.cnki.fhclxb.20211115.004

TaC对Ti(C0.7N0.3)基金属陶瓷的物相、显微结构和力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20211115.004
基金项目: 广东省引进创新科研团队计划(2013G061)
详细信息
    通讯作者:

    郭伟明,博士,教授,博士生导师,研究方向为高性能陶瓷部件与加工(陶瓷刀具、陶瓷球等)、核能用先进陶瓷、超高温与高熵陶瓷 E-mail: guo1237@126.com

  • 中图分类号: TH145.9

Effect of TaC on phase, microstructure and mechanical properties of Ti(C0.7N0.3)-based cermets

  • 摘要: 为了制备高硬度高韧性的Ti(C0.7N0.3)基金属陶瓷,采用1600℃真空无压烧结制备了含TaC的Ti(C0.7N0.3)-WC-Mo2C-VC-AlN-Ni/Co系金属陶瓷,研究了不同TaC 含量(0wt%、5wt%、10wt%、15wt%)对金属陶瓷的物相、显微结构、力学性能的影响。结果表明,随着TaC含量增加,Ti(C0.7N0.3) (200)主峰逐渐向低角度偏移,环形相的厚度逐渐增大,金属陶瓷的维氏硬度和断裂韧性均先增大后减小。当TaC含量为10wt%时,核芯相细化,尺寸离散度最小,环形相发育更完整且均匀,金属陶瓷获得最高的维氏硬度和断裂韧性,分别为(17.79±0.15) GPa和(10.20±0.39) MPa·m1/2

     

  • 图  1  (a) 不同TaC含量的Ti(C0.7N0.3)基金属陶瓷的归一化XRD图谱;(b) 35°~43°范围内的XRD图谱

    Figure  1.  (a) Normalized XRD diffraction patterns of Ti(C0.7N0.3)-based cermets with different contents of TaC; (b) XRD patterns in the range of 35°-43°

    图  2  不同TaC含量的Ti(C0.7N0.3)基金属陶瓷的SEM-背散射电子成像(BSE)图像: (a) Ti(C0.7N0.3);(b) 5wt%TaC/Ti(C0.7N0.3);(c) 10wt%TaC/Ti(C0.7N0.3);(d) 15wt%TaC/Ti(C0.7N0.3)

    Figure  2.  SEM-backscattered electron (BSE) images of Ti(C0.7N0.3)-based cermets with different amounts of TaC: (a) Ti(C0.7N0.3); (b) 5wt%TaC/Ti(C0.7N0.3); (c) 10wt%TaC/Ti(C0.7N0.3); (d) 15wt%TaC/Ti(C0.7N0.3)

    图  3  EDS线扫描Ti(C0.7N0.3)基金属陶瓷的陶瓷相主要元素的分布

    Figure  3.  Distribution of main elements in the ceramic phases of Ti(C0.7N0.3)-based cermets scanned by EDS line

    图  4  不同TaC含量的Ti(C0.7N0.3)基金属陶瓷的核芯相粒度分布

    Figure  4.  Particle size distribution of core phase of Ti(C0.7N0.3)-based cermets with different amounts of TaC

    图  5  不同TaC含量的Ti(C0.7N0.3)基金属陶瓷的力学性能

    Figure  5.  Mechanical properties of Ti(C0.7N0.3)-based cermets with different amounts of TaC

    图  6  不同TaC含量的Ti(C0.7N0.3)基金属陶瓷的裂纹扩展:(a) Ti(C0.7N0.3);(b) 5wt%TaC/Ti(C0.7N0.3);(c) 10wt%TaC/Ti(C0.7N0.3);(d) 15wt%TaC/Ti(C0.7N0.3)

    Figure  6.  Crack propagation of Ti(C0.7N0.3)-based cermets with different amounts of TaC: (a) Ti(C0.7N0.3); (b) 5wt%TaC/Ti(C0.7N0.3); (c) 10wt%TaC/Ti(C0.7N0.3); (d) 15wt%TaC/Ti(C0.7N0.3)

    表  1  Ti(C0.7N0.3)基金属陶瓷试样的原料配比

    Table  1.   Raw material ratio of Ti(C0.7N0.3)-based cermets sample

    SampleChemical composition/wt%
    Ti(C0.7N0.3)WCCoNiVCMo2CAlNTaC
    Ti(C0.7N0.3)59156.56.556.51.50
    5wt%TaC/Ti(C0.7N0.3)54156.56.556.51.55
    10wt%TaC/Ti(C0.7N0.3)49156.56.556.51.510
    15wt%TaC/Ti(C0.7N0.3)44156.56.556.51.515
    下载: 导出CSV

    表  2  不同TaC含量的Ti(C0.7N0.3)基金属陶瓷的密度和相对密度

    Table  2.   Density and relative density of Ti(C0.7N0.3)-based cermets with different TaC contents

    SampleTi(C0.7N0.3)5wt%TaC/Ti(C0.7N0.3)10wt%TaC/Ti(C0.7N0.3)15wt%TaC/Ti(C0.7N0.3)
    Density/(g·cm−3)6.446.546.906.79
    Relative density/%99.9899.8699.5295.77
    下载: 导出CSV
  • [1] 刘宁. Ti(C,N)基金属陶瓷材料[M]. 合肥: 合肥工业大学出版社, 2009: 67-93.

    LIU Ning. Ti(C,N)-based cermets[M]. Hefei: Hefei University of Technology Press, 2009: 67-93(in Chinese).
    [2] WAN W C, XIONG J, LIANG M X. Effects of secondary carbides on the microstructure, mechanical properties and erosive wear of Ti(C,N)-based cermets[J]. Ceramics International,2017,43(1):944-952. doi: 10.1016/j.ceramint.2016.10.024
    [3] 陈文琳, 刘宁, 晁盛. 添加碳化钛对超细Ti(C,N)基金属陶瓷显微结构和力学性能的影响[J]. 硅酸盐学报, 2007, 35(6):725-730. doi: 10.3321/j.issn:0454-5648.2007.06.012

    CHEN Wenlin, LIU Ning, CHAO Sheng. Effect of titanium carbide addition on microstructure and mechanical and mechanical properties of superfine Ti(C,N)-based ceramics[J]. Journal of the Chinese Ceramic Society,2007,35(6):725-730(in Chinese). doi: 10.3321/j.issn:0454-5648.2007.06.012
    [4] ZHOU W, ZHENG Y, ZHAO Y J, et al. Densification behavior, microstructure evolution and mechanical properties of Ti(C,N)-based cermets fabricated by in situ carbothermal reduction of WO3 and subsequent liquid sintering[J]. International Journal of Refractory Metals & Hard Materials,2018,74:70-77. doi: 10.1016/j.ijrmhm.2018.03.004
    [5] 宋金鹏, 高姣姣, 吕明. 颗粒弥散和核-壳共存的TiCN基金属陶瓷的制备[J]. 复合材料学报, 2020, 37(10):2552-2560. doi: 10.13801/j.cnki.fhclxb.20200617.003

    SONG Jinpeng, GAO Jiaojiao, LV Ming. Fabrication of TiCN-based cermet with a coexisted microstructure of particle dispersion and core-rim structure[J]. Acta Materiae Compositae Sinica,2020,37(10):2552-2560(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200617.003
    [6] 陈文琳. 超细晶粒Ti(C,N)基金属陶瓷刀具与切削性能研究[D]. 合肥: 合肥工业大学, 2007.

    CHEN Wenlin. Research on tool and cutting performance of ultra-fine grain Ti(C,N)-based cermets[D]. Hefei: Hefei University of Technology, 2007(in Chinese).
    [7] 钟杰, 郑勇, 张一欣. 功能梯度Ti(C,N)基金属陶瓷制备技术[J]. 复合材料学报, 2009, 26(3):111-115. doi: 10.3321/j.issn:1000-3851.2009.03.020

    ZHONG Jie, ZHENG Yong, ZHANG Yixin. Fabrication technology of functionally graded Ti(C,N)-based cermets[J]. Acta Materiae Compositae Sinica,2009,26(3):111-115(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.03.020
    [8] WU P, ZHENG Y, ZHAO Y L, et al. Effect of TaC addition on the microstructures and mechanical properties of Ti(C,N)-based cermets[J]. Materials & Design,2010,31(7):3537-3541. doi: 10.1016/j.matdes.2010.01.047
    [9] XIONG J, GUO Z X, SHEN B L. The effect of WC, Mo2C, TaC content on the microstructure and properties of ultra-fine TiC0.7N0.3 cermet[J]. Materials & Design,2007,28(5):1689-1694. doi: 10.1016/j.matdes.2006.03.005
    [10] VERMA V, KUMAR B V M. Processing of TiCN–WC–Ni/Co cermets via conventional and spark plasma sintering technique[J]. Transactions of the Indian Institute of Metals,2017,70(3):843-853. doi: 10.1007/s12666-017-1069-y
    [11] KIANI S, YANG J M, KODAMBAKA S. Nanomechanics of refractory transition-metal carbides: A path to discovering plasticity in hard ceramics[J]. Journal of the American Ceramic Society,2015,98(8):2313-2323. doi: 10.1111/jace.13686
    [12] ZHAO X R, ZHANG M X, ZUO D W, et al. Ti(C,N)-based cermet with different TaC/(TaC+WC) weight ration by in-situ reactive hot pressing: Microstructure and mechanical properties[J]. Materials Today Communications,2020,25:101661. doi: 10.1016/j.mtcomm.2020.101661
    [13] KUMAR B V M, BASU B J. Tribochemistry in sliding wear of TiCN–Ni-based cermets[J]. Journal of Materials Research,2008,23(5):1214-1227. doi: 10.1557/JMR.2008.0165
    [14] 詹斌, 刘宁. VC对纳米TiN改性Ti(C,N)基金属陶瓷组织和性能的影响[J]. 硬质合金, 2010, 27(4):214-220. doi: 10.3969/j.issn.1003-7292.2010.04.005

    ZHAN Bin, LIU Ning. Effect of VC on microstructure and properties of Ti(C,N)-based cermet modified by nano TiN[J]. Cemented Carbide,2010,27(4):214-220(in Chinese). doi: 10.3969/j.issn.1003-7292.2010.04.005
    [15] XIONG H W, XIE D, CHEN J J. Ti(C,N)-based cermets with strengthened interfaces: Roles of secondary cubic carbides[J]. Journal of the American Ceramic Society,2020,103(3):1582-1592. doi: 10.1111/jace.16893
    [16] XU L W, LIN N, ZHAO L B, et al. Improvement in wear and corrosion resistance of Ti(C,N)-based cermets via aluminum nitride additions[J]. Vacuum,2019,168:108849. doi: 10.1016/j.vacuum.2019.108849
    [17] LIU N, XU Y D, LI Z H, et al. Effects of addition of TiN nanoparticles on microstructure and mechanical properties of TiC based cermets[J]. Materials Science and Technology,2002,18(5):586-590. doi: 10.1179/026708302225001769
    [18] LIU A, LIU N. Effect of WC-Co granules on mechanical properties and microstructure of Ti(C,N)-based cermets[J]. Ceramics International,2016,42(14):15274-15284. doi: 10.1016/j.ceramint.2016.06.143
    [19] LEE H C, GURLAND J. Hardness and deformation of cemented tungsten carbide[J]. Materials Science and Engineering,1978,33(1):125-133. doi: 10.1016/0025-5416(78)90163-5
    [20] 刘文俊, 熊惟皓, 郑勇. Ti(C,N)基金属陶瓷断口形貌及增韧机理[J]. 中国有色金属学报, 2006, 16(5):800-804. doi: 10.3321/j.issn:1004-0609.2006.05.009

    LIU Wenjun, XIONG Weihao, ZHENG Yong. Fracture morphology and toughening mechanism of Ti(C,N)-based cermets[J]. The Chinese Journal of Nonferrous Metals,2006,16(5):800-804(in Chinese). doi: 10.3321/j.issn:1004-0609.2006.05.009
    [21] ZHOU H J, HUANG C Z, ZOU B, et al. Effects of metal phases and carbides on the microstructure and mechanical properties of Ti(C,N)-based cermets cutting tool mate-rials[J]. Materials Science and Engineering A,2014,618:462-470. doi: 10.1016/j.msea.2014.09.052
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  859
  • HTML全文浏览量:  518
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 修回日期:  2021-11-08
  • 录用日期:  2021-11-16
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回