留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

爆炸载荷下机织物的动态响应与失效行为

解江 高斌元 甄婷婷 姜超 冯振宇

解江, 高斌元, 甄婷婷, 等. 爆炸载荷下机织物的动态响应与失效行为[J]. 复合材料学报, 2022, 39(10): 4949-4960. doi: 10.13801/j.cnki.fhclxb.20211108.004
引用本文: 解江, 高斌元, 甄婷婷, 等. 爆炸载荷下机织物的动态响应与失效行为[J]. 复合材料学报, 2022, 39(10): 4949-4960. doi: 10.13801/j.cnki.fhclxb.20211108.004
XIE Jiang, GAO Binyuan, ZHEN Tingting, et al. Dynamic response and failure behaviors of woven fabrics under blast load[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4949-4960. doi: 10.13801/j.cnki.fhclxb.20211108.004
Citation: XIE Jiang, GAO Binyuan, ZHEN Tingting, et al. Dynamic response and failure behaviors of woven fabrics under blast load[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4949-4960. doi: 10.13801/j.cnki.fhclxb.20211108.004

爆炸载荷下机织物的动态响应与失效行为

doi: 10.13801/j.cnki.fhclxb.20211108.004
基金项目: 中央高校基本科研业务费(3122019193);中国民航大学研究生科研创新资助项目(2020YJS050)
详细信息
    通讯作者:

    解江,博士,副研究员,硕士生导师,研究方向为复合材料冲击动力学 E-mail: xiejiang5@126.com

  • 中图分类号: O383

Dynamic response and failure behaviors of woven fabrics under blast load

  • 摘要: 为探究爆炸载荷下纤维织物的动态响应与失效行为,对3种平纹纤维织物进行了准静态及高应变率拉伸试验,获取了织物的力学性能参数,建立了织物材料的本构模型。采用任意欧拉-拉格朗日算法(ALE)算法,建立了织物爆炸冲击数值分析模型,研究了爆炸载荷下纤维织物的动态响应过程和失效模式,并与试验结果进行了对比,验证了模型的有效性,得到了织物的变形峰值与比例距离之间的关系以及混杂层叠织物中各织物的吸能量。结果表明,3种织物表现出不同程度的应变率敏感性,芳纶和超高分子量聚乙烯(Ultra-high molecular weight polyethylene,UHMWPE)纤维织物的失效应变和极限强度都随应变率的增加而增大,应变率效应明显,碳纤维织物的极限强度略有增加,应变率效应不明显。数值分析得到了与试验相同的织物失效模式:中心破孔和简支边界撕裂。在所研究工况范围内,织物的变形峰值与比例距离成反比例关系,且变形峰值超过39 mm时背爆面织物会发生失效;UHMWPE纤维织物层的比吸能达到24.7 J/g,分别是芳纶织物和碳纤织物的4.3倍和8.5倍。

     

  • 图  1  干布模型典型的应力-应变曲线

    Figure  1.  Stress-strain curve for *MAT_DRY_FABRIC

    图  2  准静态拉伸试件

    Figure  2.  Specimen for quasi-static tensile test

    图  3  动态拉伸试件

    Figure  3.  Specimen for dynamic tensile test

    图  4  3种织物典型的应力-应变曲线

    Figure  4.  Typical stress-strain curves of three kinds of fabric

    图  5  动态拉伸试验前后3种织物试件对比

    Figure  5.  Comparison of three kinds of fabric test pieces before and after dynamic tensile test

    图  6  不同应变率下3种织物的应力-应变曲线

    Figure  6.  Stress-strain curves of three kinds of fabric under different strain rates

    图  7  3种织物应变率参数随应变率的变化关系

    Figure  7.  Relationship between strain rate parameters of three kinds of fabric and strain rate

    C-S—Cowper-Symonds

    图  8  纤维织物爆炸冲击有限元模型

    Figure  8.  Finite element model of blast impact of fiber fabric

    TNT—Trinitrotoluene

    图  9  各比例距离下的超压峰值对比

    Figure  9.  Comparison of peak overpressure at each scaled distance

    图  10  在30 g TNT当量、200 mm爆距、3.1 mm厚纤维织物工况下,织物中心点最大位移随网格尺寸的变化规律

    Figure  10.  Maximum displacement of the fabric center point varies with the grid size under the working condition of 30 g TNT equivalent, 200 mm stand-off distance and 3.1 mm thick fabric

    图  11  20 g TNT、150 mm爆距工况冲击过程:((a)~(c)) 数值模拟中的动态响应过程; ((d)~(f)) 试验中的动态响应过程

    Figure  11.  Impact process of 150 mm stand-off distance with 20 g TNT: ((a)-(c)) Dynamic response process in numerical simulation; ((d)-(f)) Dynamic response process in test

    图  12  60 g TNT、100 mm爆距工况冲击过程:((a)~(c)) 数值模拟中的动态响应过程; ((d)~(f)) 试验中的动态响应过程

    Figure  12.  Impact process of 100 mm stand-off distance with 60 g TNT: ((a)-(c)) Dynamic response process in numerical simulation; ((d)-(f)) Dynamic response process in test

    图  13  增加3.1 mm厚织物层前后测点超压时程曲线对比

    Figure  13.  Comparison of time history curves of overpressure at measuring points before and after adding 3.1 mm thick hybrid fabric

    图  14  9.3 mm厚混杂织物在100 g TNT、100 mm爆距下的失效模式

    Figure  14.  Failure mode of 9.3 mm thick hybrid fabric under 100 g TNT and 100 mm stand-off distance

    图  15  3.1 mm厚混杂织物在60 g TNT、100 mm爆距下的失效模式

    Figure  15.  Failure mode of 3.1 mm thick hybrid fabric under 60 g TNT and 100 mm stand-off distance

    图  16  3.1 mm厚混杂织物在60 g TNT、100 mm爆距工况下的应变云图

    Figure  16.  Strain cloud diagram of 3.1 mm thick hybrid fabric under 60 gTNT and 100 mm stand-off distance

    图  17  各厚度织物变形峰值与比例距离关系

    Figure  17.  Relationship between peak deformation and scaled distance of fabrics of each thickness

    图  18  3种织物能量吸收情况

    Figure  18.  Energy absorption of three kinds of fabric

    表  1  各织物的主要物理参数

    Table  1.   Main physical parameters of each fabric

    MaterialAramid fiber fabricCarbon fiber fabricUHMWPE
    GradeF-268HF30S-12KZTZ 24
    Yarn density/(g·(1000 m)−1)166800126±10
    Yarn body density/(g·cm−3)1.441.80.97
    Yarn breaking elongation/%≥3.21.7-2.23-3.5
    Yarn tensile modulus/GPa≥125245-270105-110
    Fabric thickness/mm0.30.550.55
    Fabric density/(yarns·(10 cm)−1)65×6530×3087×87
    Fabric surface density/(g·m−2)210-220480235-245
    Note: UHMWPE—Ultra-high molecular weight polyethylene.
    下载: 导出CSV

    表  2  织物经向和纬向参数

    Table  2.   Warp and weft parameters of each fabric

    Test piecePeak load
    /N
    Ultimate strength
    /MPa
    Elastic modulus
    /MPa
    Elongation
    /mm
    Elongation at break
    /%
    F-268 warp4287.42076.368230.46.933.47
    F-268 weft4248.42061.668643.66.813.41
    HF30S-12K warp9931.82562.9142959.94.922.46
    HF30S-12K weft8999.82318.8139591.34.792.40
    ZTZ 24 warp9630.42500.847179.113.516.76
    ZTZ 24 weft9455.62473.446704.113.356.68
    下载: 导出CSV

    表  3  3种织物的材料模型参数输入值

    Table  3.   Input values of material model parameters of three kinds of fabric

    ParameterF-268HF30S-12KZTZ 24
    Density Ro/(g·mm−3)7.2×10−48×10−44×10−4
    Warp fiber elastic modulus Ea/MPa68230.4142959.947179.1
    Weft fiber elastic modulus Eb/MPa68643.6139591.346704.1
    Elastic modulus coefficient of warp crimp zone Ea,crf0.0410.1500.275
    Elastic modulus coefficient of weft crimp zone Eb,crf0.0410.1500.275
    Critical strain in warp crimp zone Ea,crp0.0050.0030.024
    Critical strain in the zonal crimp zone Eb,crp0.0050.0030.024
    Modulus of elasticity coefficient in meridional post-peak region Ea,sf−3.06−1.6−1.3
    Elastic modulus coefficient in the weft post-peak zone Eb,sf−3.06−1.6−1.3
    Peak warp strain εa,max0.0340.0210.074
    Peak weft strain εb,max0.0340.0210.074
    Initial stress in nonlinear region SIGPOST/MPa92.7553656.9
    Strain rate parameter C188103190
    Strain rate parameter P5.833.28.5
    Warp failure strain εa,fail0.200.250.40
    Weft failure strain εb,fail0.200.250.40
    下载: 导出CSV

    表  4  TNT参数

    Table  4.   Parameters of TNT

    ParameterValue
    Density/(103 kg·m−3)1.63
    Detonation velocity/(m·s−1)6930
    Detonation pressure/GPa21
    A/GPa374
    B/GPa3.74
    R14.15
    R21.4
    ω0.35
    E/(103 MJ·m−3)7
    Notes: A, B, R1, R2, ω—Constants characterizing TNT properties; E—Detonation energy per unit volume.
    下载: 导出CSV

    表  5  空气参数

    Table  5.   Parameters of air

    ParameterValue
    Density/(kg·m−3)1.29
    C40.4
    C50.4
    C0,C1,C2,C3,C60
    E0/(MJ·m−3)0.25
    Notes: C0-C6—Polynomial equation coefficients; E0—Initial internal energy.
    下载: 导出CSV

    表  6  不同比例距离Z下的超压峰值

    Table  6.   Peak overpressure at different scaled distances Z

    Z
    /(m·kg−1/3)
    Test
    /kPa
    Empirical formula
    /kPa
    Simulation
    /
    kPa
    1.85175.3218.3168.3
    1.47411.5374.3347.8
    1.28585.1524.9521.6
    1.08856.5805.0864.0
    1.00878.3970.0960.2
    下载: 导出CSV

    表  7  各厚度织物在不同比例距离下的变形峰值

    Table  7.   Deformation peak values of fabrics of each thickness at different scaled distances

    Thickness of
    fabric/mm
    Stand-off
    distance/
    mm
    TNT mass/gZ/
    (m·kg−1/3)
    Maximum
    deformation/
    mm
    100 60 0.255 Failure
    150 60 0.384 39.4
    200 60 0.51 36.1
    3.1 200 20 0.74 34.0
    300 20 1.1 32.5
    300 10 1.4 30.1
    100 80 0.232 Failure
    100 60 0.255 39.7
    150 60 0.384 37.9
    6.2 200 60 0.51 34.8
    200 20 0.74 31.0
    300 20 1.1 29.0
    300 10 1.4 27.3
    100 80 0.232 Failure
    100 60 0.255 38.3
    150 60 0.384 34.6
    9.3 200 60 0.51 33.8
    200 20 0.74 27.9
    300 20 1.1 25.5
    300 10 1.4 23.9
    100 150 0.19 Failure
    100 120 0.203 38.1
    100 100 0.215 35.8
    100 60 0.255 34.0
    12.4 150 60 0.384 31.4
    200 60 0.51 29.6
    200 20 0.74 25.2
    300 20 1.1 22.9
    300 10 1.4 17.7
    下载: 导出CSV
  • [1] Federal Aviation Administration. Security considerations requirements for transport category airplanes: Far part 25 amendment No: 25-127[S]. Washington: Federal Aviation Administration, 2008.
    [2] Federal Aviation Administration. Least risk bomb location: FAA AC 25.795-6[S]. Washington: Federal Aviation Administration, 2008.
    [3] LANGDON G S, CANTWELL W J, GUAN Z W, et al. The response of polymeric composite structures to air-blast loading: A state-of-the-art[J]. International Materials Reviews,2014,59(3):159-177. doi: 10.1179/1743280413Y.0000000028
    [4] YANG C C, NGO T, TRAN P. Influences of weaving architectures on the impact resistance of multi-layer fabrics[J]. Materials and Design,2015,85:282-295. doi: 10.1016/j.matdes.2015.07.014
    [5] 翁浦莹. STF-Kevlar、UHMWPE织物复合形式及其防弹性能研究[D]. 杭州: 浙江理工大学, 2015.

    WENG Puying. Study on the composite form of STF-Kevlar and UHMWPE fabrics and their ballistic performance[D]. Hangzhou: Zhejiang Sci-Tech University, 2015(in Chinese).
    [6] ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Ballistic impact mechanisms—A review on textiles and fibre reinforced composites impact responses[J]. Composite Structures,2019,223:110966. doi: 10.1016/j.compstruct.2019.110966
    [7] 陈晓钢. 纺织基防弹防穿刺材料的研究回顾[J]. 纺织学报, 2019, 40(6):158-164. doi: 10.13475/j.fzxb.20190204507

    CHEN Xiaogang. Review of research on textile-based bullet-proof and puncture-proof materials[J]. Journal of Textile Research,2019,40(6):158-164(in Chinese). doi: 10.13475/j.fzxb.20190204507
    [8] 何业茂, 焦亚男, 周庆, 等. 弹道防护用先进复合材料弹道响应的研究进展[J]. 复合材料学报, 2021, 38(5):1331-1347. doi: 10.13801/j.cnki.fhclxb.20201201.004

    HE Yemao, JIAO Ya'nan, ZHOU Qing, et al. Research progress on ballistic response of advanced composite for ballistic protection[J]. Acta Materiae Compositae Sinica,2021,38(5):1331-1347(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201201.004
    [9] YANG Y F, CHEN X G. Investigation of energy absorption mechanisms in a soft armor panel under ballistic impact[J]. Textile Research Journal,2017,87(20):2475-2486. doi: 10.1177/0040517516671129
    [10] YANG Y F, CHEN X G. Investigation of failure modes and influence on ballistic performance of ultra-high molecular weight polyethylene (UHMWPE) uni-directional laminate for hybrid design[J]. Composite Structures,2017,174(8):233-243. doi: 10.1016/j.compstruct.2017.04.033
    [11] YANG Y F, CHEN X G. Influence of fabric architecture on energy absorption efficiency of soft armour panel under ballistic impact[J]. Composite Structures,2019,224(9):111015. doi: 10.1016/j.compstruct.2019.111015
    [12] ZHAO Y, CAO M, TAN H X, et al. Hybrid woven carbon-dyneema composites under drop-weight and steel ball impact[J]. Composite Structures,2019,236:111811. doi: 10.1016/j.compstruct.2019.111811
    [13] 袁子舜, 陆振乾, 许玥, 等. 超高分子量聚乙烯纤维平纹织物-单向布混合堆叠板的防弹机制[J]. 复合材料学报, 2022, 39(6):2707-2715. doi: 10.13801/j.cnki.fhclxb.20210625.001

    YUAN Zishun, LU Zhenqian, XU Yue, et al. Ballistic mechanism of the hybrid panels with UHMWPE woven fabrics and UD laminates[J]. Acta Materiae Compositae Sinica,2022,39(6):2707-2715(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210625.001
    [14] 赵敏, 赵睿昕, 沈永明, 等. CFR嵌片对超高分子质量聚乙烯多层复合织物防爆性能的影响[J]. 纺织学报, 2014, 35(3):37-40.

    ZHAO Min, ZHAO Ruixin, SHEN Yongming, et al. Influence of CFR insert on explosion-proof performance of UHMWPE multi-compound fabric[J]. Journal of Textile Research,2014,35(3):37-40(in Chinese).
    [15] ZHANG Y, YAN D J, NIAN X Z, et al. Numerical analysis of rigid and flexible reflection of air shock wave[J]. Applied Mechanics Materials,2014,638-640:2010-2014. doi: 10.4028/www.scientific.net/AMM.638-640.2010
    [16] ZHANG B, NIAN X Z, JIN F N, et al. Failure analyses of flexible ultra-high molecular weight polyethylene (UHMWPE) fiber reinforced anti-blast wall under explosion[J]. Composite Structures,2018,184:759-774. doi: 10.1016/j.compstruct.2017.10.037
    [17] MARKERT F, THOMMESEN J. Blastworthy textile-based luggage containers for aviation safety[J]. Safety and security analysis,2011,40:213557.
    [18] DONATO Z, SAMUELE A, ALESSANDRO B, et al. Textile-based luggage containers for onboard blast protection[J]. Sae International Journal of Aerospace,2011,4(2):690-698. doi: 10.4271/2011-01-2517
    [19] GIOVANELLE M L. Advanced technologies for bombproof cargo containers and blast containment units for the retrofitting of passenger airplanes[J]. International Journal of Aviation Systems, Operations and Training,2015,2(1):33-47. doi: 10.4018/IJASOT.2015010103
    [20] FILIPPO M, MARIA M P, PAOLO V. Blast actions in aircrafts: An integrated methodology for designing protection devices[J]. Engineering Structures,2018,175:895-911. doi: 10.1016/j.engstruct.2018.08.082
    [21] STANHLECKER Z, MOBASHER B, RAJAN S D. Development of reliable modeling methodologies for engine fan blade out containment analysis: Part II— Finite element analysis[J]. International Journal of Impact Engineering,2009,36(3):447-459. doi: 10.1016/j.ijimpeng.2008.08.004
    [22] 冯振宇, 裴惠, 迟琪琳, 等. Kevlar织物软壁包容环抗冲击数值仿真分析研究[J]. 振动与冲击, 2020, 39(10):15-23. doi: 10.13465/j.cnki.jvs.2020.10.003

    FENG Zhenyu, PEI Hui, CHI Qilin, et al. Numerical simulation analysis of impact resistance of Kevlar fabric soft wall containment ring[J]. Vibration and Shock,2020,39(10):15-23(in Chinese). doi: 10.13465/j.cnki.jvs.2020.10.003
    [23] ASTM International. Standard test method for breaking force and elongation of textile fabrics (strip method): ASTM D5035—06[S]. West Conshohocken: ASTM, 2006.
    [24] 中国国家标准化管理委员会. 纺织品织物拉伸性能第1部分: 断裂强力和断裂伸长率的测定(条样法): GB/T 3923.1—2013[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration of the People's Republic of China. Tensile properties of textile fabrics part 1: Determination of breaking strength and breaking elongation (strip method): GB/T 3923.1—2013[S]. Beijing: China Standards Press, 2013(in Chinese).
    [25] TAN V, ZENG X S, SHIM V. Characterization and constitutive modeling of aramid fibers at high strain rates[J]. International Journal of Impact Engineering,2008,35(11):1303-1313. doi: 10.1016/j.ijimpeng.2007.07.010
    [26] COWPER G R, SYMONDS P S. Strain hardening and strain rate effect in the impact loading of cantilever beams[D]. Providence: Brown University, 1957.
    [27] SADOVSKYI M A. Mechanical action of air shock waves of explosion, based on experimenta data[M]. Moscow: Izd Akad Nauk SSSR, 1952.
  • 加载中
图(18) / 表(7)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  144
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 修回日期:  2021-10-17
  • 录用日期:  2021-10-30
  • 网络出版日期:  2021-11-09
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回