留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑物理老化效应的树脂基复合材料长时黏弹性变形实验测试与建模分析

杨江艳 马小飞 王辉 尚福林 侯德门

杨江艳, 马小飞, 王辉, 等. 考虑物理老化效应的树脂基复合材料长时黏弹性变形实验测试与建模分析[J]. 复合材料学报, 2022, 39(10): 4997-5007. doi: 10.13801/j.cnki.fhclxb.20211105.002
引用本文: 杨江艳, 马小飞, 王辉, 等. 考虑物理老化效应的树脂基复合材料长时黏弹性变形实验测试与建模分析[J]. 复合材料学报, 2022, 39(10): 4997-5007. doi: 10.13801/j.cnki.fhclxb.20211105.002
YANG Jiangyan, MA Xiaofei, WANG Hui, et al. Experimental study and modeling of long-term viscoelastic behavior of resin matrix composite with consideration of physical aging effect[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4997-5007. doi: 10.13801/j.cnki.fhclxb.20211105.002
Citation: YANG Jiangyan, MA Xiaofei, WANG Hui, et al. Experimental study and modeling of long-term viscoelastic behavior of resin matrix composite with consideration of physical aging effect[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4997-5007. doi: 10.13801/j.cnki.fhclxb.20211105.002

考虑物理老化效应的树脂基复合材料长时黏弹性变形实验测试与建模分析

doi: 10.13801/j.cnki.fhclxb.20211105.002
基金项目: 国家自然科学基金(12072248)
详细信息
    通讯作者:

    尚福林,博士,教授,博士生导师,研究方向为复合材料结构力学行为、塑性力学与微纳米材料力学等 E-mail: shangfl@mail.xjtu.edu.cn

  • 中图分类号: TB332

Experimental study and modeling of long-term viscoelastic behavior of resin matrix composite with consideration of physical aging effect

  • 摘要: 为充分掌握碳纤维增强环氧树脂基(CF/EP)复合材料的短时和长时变形特性,对一类碳纤维/环氧层合试样开展了蠕变试验研究。试验采用恒温、恒定载荷拉伸加载方式,获得了其在不同试验温度(25℃和50℃)、不同拉伸载荷水平(20%、30%和40%的拉伸极限强度值)下的应变变化规律。试验结果表明:该类材料的变形行为表现出显著的黏弹性特征,并且兼具蠕变温度效应与物理老化效应。加载初期的较短时间内,拉伸应变随时间逐渐增大,呈现出明显的蠕变变形第一、第二阶段特征;当加载时间超过其物理老化特征时间之后,在加载的大部分时间段内,这种与时间有关的变形则开始逐渐减小,呈现出清晰的物理老化特征。为了合理表征这种特殊的黏弹性变形行为,进一步构建了包含蠕变温度效应与物理老化效应的线性黏弹性理论模型。提出了可描述该复合材料黏弹性变形的本构关系,并给出了Prony级数近似解法,进而编写了相应的有限元材料子程序UMAT。仿真结果表明,所构建的理论模型能够合理地描述该类复合材料的黏弹性变形。

     

  • 图  1  碳纤维增强环氧树脂(CF/EP)复合材料试样恒温蠕变实验图

    Figure  1.  Creep test of carbon fiber reinforced epoxy (CF/EP) composite specimens at constant temperature

    图  2  CF/EP复合材料在25℃下的应变-时间曲线

    Figure  2.  Axial strain-time curves obtained at 25°C for CF/EP composites

    T—Temperature

    图  3  CF/EP复合材料在50℃下的应变-时间曲线

    Figure  3.  Axial strain-time curves obtained at 50°C for CF/EP composites

    图  4  CF/EP复合材料的短时非弹性应变-时间曲线

    Figure  4.  Short-term inelastic strain-time curves obtained for CF/EP composites

    图  5  CF/EP复合材料的长时非弹性应变-时间曲线

    Figure  5.  Long-term inelastic strain-time curves obtained at 50°C for CF/EP composites

    图  6  CF/EP复合材料在25℃下即时弹性应变-加载应力水平曲线

    Figure  6.  Instantaneous elastic strain versus stress level curve for CF/EP composites at 25℃

    图  7  CF/EP复合材料在25℃下瞬态柔量随加载时间的变化规律(加载至208.3 h)

    Figure  7.  Transient compliance versus loading time results obtained at 25°C for CF/EP composites (Loaded for 208.3 h)

    图  8  CF/EP复合材料在25℃和50℃下的本构模型计算结果与实验数据对照应变-时间曲线

    Figure  8.  Comparison of strain versus time results from experiment and new model for CF/EP composites at 25°C and 50°C

    表  1  CF/EP复合材料试样编号

    Table  1.   CF/EP composite sample labels under different load levels

    Load levelLabel
    20%UTS CF/EP-0.2
    30%UTS CF/EP-0.3
    40%UTS CF/EP-0.4
    下载: 导出CSV

    表  2  CF/EP复合材料试样黏弹性本构模型参数

    Table  2.   Parameters related to viscoelastic model of CF/EP composite specimen

    n$ \lambda _n^{{\text{TE}}} $$ S_n^{{\text{TE}}} $$ \lambda _n^{{\text{AE}}} $$ S_n^{{\text{AE}}} $
    10.10.3460.1−0.0927
    20.010.0740.01−0.1881
    30.0010.1570.001−0.3321
    40.00010.2020.0001−0.8055
    50.000010.1310.00001−0.6237
    60.0000010.4670.000001−1.2105
    HTSF${a_{\text{H} } }(T) = \exp \left[ - 152.32 \times \left(\dfrac{1}{ {25} } - \dfrac{1}{T}\right)\right]$
    VTSF${a_{\text{v} } }(T) = 0.159 + 0.0405 T - 0.000273 {T^2}$
    ASF${a_{ {\text{te} } } }(t) = {\left(\dfrac{ { {t_{ {\text{e,ref} } } } } }{ { {t_{ {\text{e,ref} } } } + t} }\right)^{0.5} }$
    CT${t_{ {\text{e,ref} } } } = 655\;500$
    Notes: n—Number of terms for each component in the transient compliance; $ \lambda _n^{{\text{TE}}} $ and $ \lambda _n^{{\text{AE}}} $—nth reciprocal of retardation time corresponding to $ S_n^{{\text{TE}}} $ and $ S_n^{{\text{AE}}} $; $ S_n^{{\text{TE}}} $ and $ S_n^{{\text{AE}}} $—nth coefficient of Prony series for each component in transient compliance of TE and AE; HTSF, aH—Horizontal temperature shift factor; VTSF, av—Vertical temperature shift factor; ASF, ate—Physical aging time shift factor; CT, te,ref—Physical aging characteristic time; t—Time; T—Temperature.
    下载: 导出CSV
  • [1] 沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006.

    SHEN Guanlin, HU Gengkai. Mechanics of composite materials[M]. Beijing: Tsinghua University Press, 2006(in Chinese).
    [2] HUTCHINSON J M. Physical aging of polymers[J]. Progress in Polymer Science,1995,20(4):703-760. doi: 10.1016/0079-6700(94)00001-I
    [3] HU H, SUN C T. The characterization of physical aging in polymeric composites[J]. Composites Science and Technology,2000,60(14):2693-2698. doi: 10.1016/S0266-3538(00)00127-5
    [4] ODEGARD G M, BANDYOPADHYAY A. Physical aging of epoxy polymers and their composites[J]. Journal of Polymer Science, Part B: Polymer Physics,2011,49(24):1695-1716. doi: 10.1002/polb.22384
    [5] LEVEQUE D, SCHIEFFER A, MAIRE J F. Analysis of how thermal aging affects the long-term mechanical behavior and strength of polymer-matrix composites[J]. Composites Science and Technology,2005,65(3-4):395-401. doi: 10.1016/j.compscitech.2004.09.016
    [6] 刘鹏飞, 赵启林, 王景全. 树脂基复合材料蠕变性能研究进展[J]. 玻璃钢/复合材料, 2013(3):109-117. doi: 10.3969/j.issn.1003-0999.2013.03.025

    LIU Pengfei, ZHAO Qilin, WANG Jingquan. Process in research of the creep behavior of polymers[J]. Fiber Reinforced Plastics/Composites,2013(3):109-117(in Chinese). doi: 10.3969/j.issn.1003-0999.2013.03.025
    [7] 曲艳双, 朱迅, 董鹏, 等. 树脂基复合材料的粘弹性研究进展[J]. 纤维复合材料, 2008, 25(1):42-44.

    QU Yanshuang, ZHU Xun, DONG Peng, et al. Progress in the development of study on viscoelasticity behavior of resin matrix composites[J]. Fiber Composites,2008,25(1):42-44(in Chinese).
    [8] 朱迅, 王明寅, 王荣国, 等. 纤维增强聚合物基复合材料的蠕变力学研究进展[J]. 纤维复合材料, 2004, 21(3):51-53. doi: 10.3969/j.issn.1003-6423.2004.03.016

    ZHU Xun, WANG Mingyin, WANG Rongguo, et al. Progress in the development of creep behavior of fiber reinforced polymer composites[J]. Fiber Composites,2004,21(3):51-53(in Chinese). doi: 10.3969/j.issn.1003-6423.2004.03.016
    [9] GOERTZEN W K, KESSLER M R. Creep behavior of carbon fiber/epoxy matrix composites[J]. Materials Science and Engineering A,2006,421(1-2):217-225. doi: 10.1016/j.msea.2006.01.063
    [10] MULIANA A, NAIR A, WAGNER S. Characterization of thermo-mechanical and long-term behaviors of multi-layered composite materials[J]. Composites Science and Technology,2006,66(15):2907-2924. doi: 10.1016/j.compscitech.2006.02.016
    [11] BERARDI V P, PERRELLA M, CRICRI G. Creep behavior of GFRP laminates and their phases: Experimental investigation and analytical modeling[J]. Composites Part B: Engineering,2017,122:136-144. doi: 10.1016/j.compositesb.2017.04.015
    [12] 张尧, 朱四荣, 陆士平, 等. 考虑界面效应的GFRP复合材料蠕变模型[J]. 复合材料学报, 2021, 38(11):3682-3692. doi: 10.13801/j.cnki.fhclxb.20210119.001

    ZHAO Rao, ZHU Sirong, LU Shiping, et al. Creep model of GFRP composites considering interface effect[J]. Acta Materiae Compositae Sinica,2021,38(11):3682-3692(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210119.001
    [13] 曹岩, 徐海龙, 王伟宏, 等. 模压成型的杨木纤维/高密度聚乙烯复合材料蠕变性能和蠕变模型[J]. 复合材料学报, 2016, 33(6):1174-1178. doi: 10.13801/j.cnki.fhclxb.20160107.004

    CAO Yan, XU Hailong, WANG Weihong, et al. Creep properties and creep model of poplar wood fiber/high-density polyethylene composites prepared by compression molding[J]. Acta Materiae Compositae Sinica,2016,33(6):1174-1178(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160107.004
    [14] 韩霞, 王继辉, 倪爱清, 等. 应力水平和纤维角度对CGF/PP复合材料蠕变 行为的影响及其Burgers模型参数的数值预测[J]. 复合材料学报, 2019, 36(5):1216-1225. doi: 10.13801/j.cnki.fhclxb.20180725.003

    HAN Xia, WANG Jihui, NI Aiqing, et al. Effects of stress levels and fiber orientations on creep behavior of CGF/PP composite and numerical prediction of Burgers model parameters[J]. Acta Materiae Compositae Sinica,2019,36(5):1216-1225(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180725.003
    [15] SULLIVAN J L. Creep and physical aging of composites[J]. Composites Science and Technology,1990,39(3):207-232. doi: 10.1016/0266-3538(90)90042-4
    [16] BRINSON L C, GATES T S. Effects of physical aging on long term creep of polymers and polymer matrix composites[J]. International Journal of Solids and Structures,1995,32(6-7):827-846. doi: 10.1016/0020-7683(94)00163-Q
    [17] 罗文波, 李其抚, 唐欣. 物理老化对PMMA准静态力学性能的影响[J]. 高分子材料科学与工程, 2009, 25(1):90-93. doi: 10.16865/j.cnki.1000-7555.2009.01.025

    LUO Wenbo, LI Qifu, TANG Xin. Effect of physical aging on quasi-static mechanical properties of polymethyl methacrylate[J]. Polymer Materials Science & Engineering,2009,25(1):90-93(in Chinese). doi: 10.16865/j.cnki.1000-7555.2009.01.025
    [18] 罗文波, 唐欣, 李其抚. 物理老化对玻璃态高聚物非线性蠕变行为的影响[J]. 固体力学学报, 2008(1):104-108. doi: 10.19636/j.cnki.cjsm42-1250/o3.2008.01.016

    LUO Wenbo, TANG Xin, LI Qifu. Effect of physical aging on nonlinear creep behavior of glassy polymers[J]. Chinese Journal of Solid Mechanics,2008(1):104-108(in Chinese). doi: 10.19636/j.cnki.cjsm42-1250/o3.2008.01.016
    [19] HU H W. Physical aging in long term creep of polymeric composite laminates[J]. Journal of Mechanics,2007,23(3):245-252. doi: 10.1017/S1727719100001283
    [20] SORVARI J, HAMALAINEN J. Time integration in linear viscoelasticity—A comparative study[J]. Mechanics of Time-Dependent Materials,2010,14(3):307-328. doi: 10.1007/s11043-010-9108-7
    [21] BRAUNER C, HERRMANN A S, SCHUBERT K. Analysis of the non-linear load and temperature-dependent creep behaviour of thermoplastic composite materials[J]. Journal of Thermoplastic Composite Materials,2017,30(3):302-317. doi: 10.1177/0892705715598359
    [22] BARBERO E J, JULIUS M J. Time-temperature-age viscoelastic behavior of commercial polymer blends and felt filled polymers[J]. Mechanics of Advanced Materials and Structures,2004,11(3):287-300. doi: 10.1080/15376490490427252
    [23] PASRICHA A, DILLARD D A, TUTTLE M E. Effect of physical aging and variable stress history on the strain response of polymeric composites[J]. Composites Science and Technology,1997,57(9-10):1271-1279. doi: 10.1016/S0266-3538(97)00054-7
    [24] BRADSHAW R D, BRINSON L C. Mechanical response of linear viscoelastic composite laminates incorporating non-isothermal physical aging effects[J]. Composites Science and Technology,1999,59(9):1411-1427. doi: 10.1016/S0266-3538(98)00179-1
    [25] PIERIK E R, GROUVE W J B, VAN DRONGELEN M, et al. The influence of physical ageing on the in-plane shear creep compliance of 5HS C/PPS[J]. Mechanics of Time-Dependent Materials,2021,24(2):197-220.
    [26] MIL-HDBK-17 Coordination Committee. Composite materials handbook. Volume 1: Polymer matrix compo-sites guidelines for characterization of structural materials[S]. Washington: MIL-HDBK-17 Coordination Committee, 2004.
    [27] 中国国家标准化管理委员会. 塑料蠕变性能的测定 第1部分: 拉伸蠕变: GB/T 11546.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastic—Determination of creep behavior—Part 1: Tensile creep: GB/T 11546.1—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [28] 中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能测试方法: GB/T 3354—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Tensile properties of orientation fiber reinforced polymer matrix composite materials: GB/ T 3354—2014[S]. Beijing: China Standards Press, 2008(in Chinese).
    [29] LAKES B R. Viscoelastic properties of materials[M]. Chapter 2. Cambridge: Cambridge University Press, 2009.
    [30] BARBERO E J. Time-temperature-age superposition principle for predicting long-term response of linear viscoelastic materials[M]. Cambridge: Woodhead Publishing, 2011: 48–69.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  169
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-23
  • 修回日期:  2021-10-25
  • 录用日期:  2021-10-29
  • 网络出版日期:  2021-11-08
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回