留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳化硅颗粒增强石墨/铝复合材料的热物理性能

曾凡坤 孟正华 郭巍

曾凡坤, 孟正华, 郭巍. 碳化硅颗粒增强石墨/铝复合材料的热物理性能[J]. 复合材料学报, 2022, 39(10): 4918-4926. doi: 10.13801/j.cnki.fhclxb.20211103.004
引用本文: 曾凡坤, 孟正华, 郭巍. 碳化硅颗粒增强石墨/铝复合材料的热物理性能[J]. 复合材料学报, 2022, 39(10): 4918-4926. doi: 10.13801/j.cnki.fhclxb.20211103.004
ZENG Fankun, MENG Zhenghua, GUO Wei. Thermophysical properties of SiC particles reinforced graphite flakes/Al composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4918-4926. doi: 10.13801/j.cnki.fhclxb.20211103.004
Citation: ZENG Fankun, MENG Zhenghua, GUO Wei. Thermophysical properties of SiC particles reinforced graphite flakes/Al composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4918-4926. doi: 10.13801/j.cnki.fhclxb.20211103.004

碳化硅颗粒增强石墨/铝复合材料的热物理性能

doi: 10.13801/j.cnki.fhclxb.20211103.004
基金项目: 国家自然科学基金青年基金(51605356)
详细信息
    通讯作者:

    郭巍,博士,副教授,博士生导师,研究方向为汽车轻量化材料 E-mail: whutgw@whut.edu.cn

  • 中图分类号: TB333

Thermophysical properties of SiC particles reinforced graphite flakes/Al composites

  • 摘要: 片层石墨/铝复合材料具有低密度、高热导率的优点,但力学性能较差,目前无法作为一种可商业化应用的电子封装材料。为了改善片层石墨/铝复合材料的热物理性能,采用真空热压法制备了碳化硅颗粒增强石墨/铝复合材料,研究了碳化硅的含量对复合材料热导率、热膨胀系数和抗弯强度的影响。结果表明,经过高频振荡工艺,碳化硅-石墨/铝复合材料中石墨的排列取向良好。添加碳化硅颗粒能明显降低复合材料的热膨胀系数,提高抗弯强度,略微降低热导率。随着碳化硅颗粒体积分数增加,碳化硅-石墨/铝复合材料内部会逐渐出现孔洞缺陷,相对密度下降。当碳化硅和石墨的体积分数分别为15vol%、50vol%时,碳化硅-石墨/铝复合材料具有最优热物理性能,此时x-y方向热导率为536 W/(m·K)、热膨胀系数为6.4×10−6 m/K,抗弯强度为102 MPa,是一种十分具有商业前景的电子封装材料。

     

  • 图  1  SiC-GFs/Al复合材料的微观形貌:(a) 60vol%GFs/40vol%Al; (b) 20vol%SiC-40vol%GFs/40vol%Al; (c) T1区域; (d) T2区域

    Figure  1.  Microstructure of SiC-GFs/Al composites: (a) 60vol%GFs/40vol%Al; (b) 20vol%SiC-40vol%GFs/40vol%Al; (c) T1 zone; (d) T2 zone

    图  2  不同SiC及GFs添加量的SiC-GFs/Al复合材料的相对密度

    Figure  2.  Relative density of the SiC-GFs/Al composites with different contents of SiC and GFs

    图  3  不同SiC及GFs添加量的SiC-GFs/Al复合材料的热导率:(a) x-y方向;(b) z方向

    Figure  3.  Thermal conductivity of the SiC-GFs/Al composites with different contents of SiC and GFs: (a) In x-y plane; (b) In z plane

    图  4  SiC-GFs/Al复合材料内部热流传递示意图

    Figure  4.  Schematic illustration of heat flux in the SiC-GFs/Al composites

    图  5  不同SiC及GFs添加量的SiC-GFs/Al复合材料的热膨胀系数:(a) x-y方向;(b) z方向

    Figure  5.  Coefficient of thermal expansion of the SiC-GFs/Al composites with different contents of SiC and GFs: (a) In x-y plane; (b) In z plane

    图  6  SiC-GFs/Al复合材料的断口形貌:((a), (b)) 50vol%GFs/50vol%Al;((c), (d)) 10vol%SiC-50vol%GFs/40vol%Al

    Figure  6.  Fracture morphologies of SiC-GFs/Al composites: ((a), (b)) 50vol%GFs/50vol%Al; ((c), (d)) 10vol%SiC-50vol%GFs/40vol%Al

    图  7  (a)不同SiC及GFs添加量的SiC-GFs/Al复合材料的抗弯强度;(b)不同Al基复合材料抗弯强度和热导率的对比

    Figure  7.  (a) Flexure strength of the SiC-GFs/Al composites with different contents of SiC and GFs; (b) Comparison of flexure strength and thermal conductivity of different Al matrix composites

    表  1  不同碳化硅-石墨/铝(SiC-GFs/Al)复合材料中碳化硅和石墨的体积分数

    Table  1.   Volume fractions of SiC and GFs in SiC-graphite flakes/Al (SiC-GFs/Al) composites

    NoSiC/vol%GFs/vol%Al/vol%
    1 0 40 60
    2 5 40 55
    3 10 40 50
    4 15 40 45
    5 20 40 40
    6 0 50 50
    7 5 50 45
    8 10 50 40
    9 15 50 35
    10 20 50 30
    11 0 60 40
    12 5 60 35
    13 10 60 30
    14 15 60 25
    15 20 60 20
    下载: 导出CSV

    表  2  碳化硅、石墨和铝的物理参数

    Table  2.   Physical parameters of SiC, GFs and Al

    Materialsρ/(kg·m−3)Cp/
    (J·(kg·K)−1)
    TC/
    (W·(m·K)−1)
    CTE/
    (10−6 m·K−1)
    SiC[19]32102902484.6
    GFs[20-21]22607101000x-y 38z−1.5x-y 25z
    Al [22]270089523723.5
    Notes: ρ—Density of the materials; Cp—Specific heat; TC—Thermal conductivity; CTE—Coefficient of thermal expansion; Superscripts “x-y” and “z”—Direction parallel and perpendicular to the GFs (002) crystal plane.
    下载: 导出CSV
  • [1] 宋业建, 郜昊强. 纯电动汽车技术现状和发展趋势分析[J]. 汽车实用技术, 2019(21):21-23. doi: 10.16638/j.cnki.1671-7988.2019.21.007

    SONG Yejian, GAO Haoqiang. Analysis of technology status and development trend of electric vehicle[J]. Automobile Applied Technology,2019(21):21-23(in Chinese). doi: 10.16638/j.cnki.1671-7988.2019.21.007
    [2] 王丹, 续丹, 曹秉刚. 电动汽车关键技术发展综述[J]. 中国工程科学, 2013, 15(1):68-72. doi: 10.3969/j.issn.1009-1742.2013.01.014

    WANG Dan, XU Dan, CAO Binggang. Overview on key techniques of electric vehicle[J]. Strategic Study of CAE,2013,15(1):68-72(in Chinese). doi: 10.3969/j.issn.1009-1742.2013.01.014
    [3] WU Y B, LIU G Y, XU N H, et al. Thermal resistance analysis and simulation of IGBT module with high power density[J]. Applied Mechanics & Materials,2013,(303-306):1902-1907. doi: 10.4028/www.scientific.net/AMM.303-306.1902
    [4] 王坚, 张迪德, 古强. IGBT不同导热材料导热性能研究[J]. 客车技术, 2019(4):8-11.

    WANG Jian, ZHANG Dide, GU Qiang. Study on thermal conductivity of different thermal conduction materials in IGBT[J]. Bus Technology,2019(4):8-11(in Chinese).
    [5] HUANG Q Q, LI X X, ZHANG G Q, et al. Thermal management of lithium-ion battery pack through the application of flexible form-stable composite phase change materials[J]. Applied Thermal Engineering,2021,18(part 1):116151. doi: 10.1016/j.applthermaleng.2020.116151
    [6] FENG C P, CHEN L B, TIAN G L, et al. Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics[J]. ACS Applied Materials & Interfaces,2019,11(20):18739-18745. doi: 10.1021/acsami.9b03885
    [7] 张晓辉, 王强. 电子封装用金属基复合材料的研究现状[J]. 微纳电子技术, 2018, 55(1):18-25, 44. doi: 10.13250/j.cnki.wndz.2018.01.004

    ZHANG Xiaohui, WANG Qiang. Research status of metal matrix composites for electronic packaging[J]. Micronanoelectronic Technology,2018,55(1):18-25, 44(in Chinese). doi: 10.13250/j.cnki.wndz.2018.01.004
    [8] LEE H S, JEON K Y, KIM H Y, et al. Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications[J]. Journal of Materials Science,2000,35(24):6231-6236. doi: 10.1023/A:1026749831726
    [9] LEE H S, HONG S H. Pressure infiltration casting process and thermophysical properties of high-volume fraction SiCp/Al metal matrix composites[J]. Materials Science and Technology,2003,19(8):1057-1064. doi: 10.1179/026708303225004396
    [10] QU X H, ZHANG L, WU M, et al. Review of metal matrix composites with high thermal conductivity for thermal management applications[J]. Progress in Natural Science: Materials International,2011,21(3):189-197. doi: 10.1016/S1002-0071(12)60029-X
    [11] LI W, LIU Y, WU G. Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting[J]. Carbon,2015,95:545-551. doi: 10.1016/j.carbon.2015.08.063
    [12] PRIETO R, MOLINA J M, NARCISO J, et al. Thermal conductivity of graphite flakes-SiC particles/metal composites[J]. Composites Part A: Applied Science & Manufacturing,2011,42(12):1970-1977.
    [13] JIA H, FAN J, LIU Y, et al. Interfacial structure of carbide-coated graphite/Al composites and its effect on thermal conductivity and strength[J]. Materials,2021,14(7):1721. doi: 10.3390/ma14071721
    [14] LIU Q, HE Z, CHENG J, et al. Theoretical and predictive modeling of interfacial thermal conductance and thermal conductivity in graphite flake/Al composites[J]. Composite Interfaces,2021,28(1):101-114. doi: 10.1080/09276440.2020.1726135
    [15] CHEN J, HUANG I S. Thermal properties of aluminum-graphite composites by powder metallurgy[J]. Compo-sites Part B: Engineering,2013,44(1):698-703. doi: 10.1016/j.compositesb.2012.01.083
    [16] WANG C, BAI H, XUE C, et al. On the influence of carbide coating on the thermal conductivity and flexural strength of X (X=SiC, TiC) coated graphite/Al composites[J]. RSC Advances,2016,6(109):107483-107490. doi: 10.1039/C6RA21754K
    [17] 黄凯, 白华, 朱英彬, 等. 石墨表面化学镀Cu对天然鳞片石墨/Al复合材料热物理性能的影响 [J]. 复合材料学报, 2018, 35(4): 920-926.

    HUANG Kai, BAI Hua, ZHU Yinbing, et al. Thermal conductivity and mechanical properties of flake graphite/Al composite with electroless Cu plating on graphite surface[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 920-926(in Chinese).
    [18] 曾凡坤, 宁越洋, 马洪兵, 等. 添加铜网对片层石墨/Al复合材料热物理性能的影响[J]. 复合材料学报, 2019, 36(10):2357-2363.

    ZENG Fankun, NING Yueyang, MA Hongbing, et al. Preparation and thermophysical properties of aligned graphite flake/Cu composites[J]. Acta Materiae Compositae Sinica,2019,36(10):2357-2363(in Chinese).
    [19] CHU K, JIA C, TIAN W, et al. Thermal conductivity of spark plasma sintering consolidated SiCp/Al composites containing pores: Numerical study and experimental validation[J]. Composites Part A: Applied Science and Manufacturing,2010,41(1):161-167. doi: 10.1016/j.compositesa.2009.10.001
    [20] YUAN G, LI X, DONG Z, et al. Graphite blocks with preferred orientation and high thermal conductivity[J]. Carbon,2012,50(1):175-182. doi: 10.1016/j.carbon.2011.08.017
    [21] PRASHER R. Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes[J]. Physical Review B, 2008, 77(7): 075424.
    [22] TAN Z Q, LI Z Q, XIONG D B, et al. A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites[J]. Materials & Design,2014,55:257-262. doi: 10.1016/j.matdes.2013.09.060
    [23] 全国钢标准化技术委员会. 金属弯曲试验方法: GB/T 232—2010[S]. 北京: 中国标准出版社, 2010.

    National Technical Committee on Steel Standardization. Metallic materials—Bend test: GB/T 232—2010[S]. Beijing: China Standards Press, 2010(in Chinese).
    [24] NAN C, BIRRINGER R, CLARKE D R, et al. Effective thermal conductivity of particulate composites with interfacial thermal resistance[J]. Journal of Applied Physics,1997,81(10):6692-6699. doi: 10.1063/1.365209
    [25] TRUONG H V, ZINSMEISTER G E. Experimental study of heat transfer in layered composites[J]. International Journal of Heat and Mass Transfer,1978,21(7):905-909. doi: 10.1016/0017-9310(78)90182-5
    [26] ZHOU C, JI G, CHEN Z, et al. Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications[J]. Materials & Design,2014,63:719-728. doi: 10.1016/j.matdes.2014.07.009
    [27] XUE C, BAI H, TAO P F, et al. Thermal conductivity and mechanical properties of flake graphite/Al composite with a SiC nano-layer on graphite surface[J]. Materials & Design,2016,108:250-258. doi: 10.1016/j.matdes.2016.06.122
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1230
  • HTML全文浏览量:  422
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-24
  • 修回日期:  2021-10-19
  • 录用日期:  2021-10-28
  • 网络出版日期:  2021-11-04
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回