留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混杂纤维增强环氧树脂复合材料高速冲击损伤行为

曹俊超 孙建波 曹勇 张晨旭 杨智勇 张超

曹俊超, 孙建波, 曹勇, 等. 混杂纤维增强环氧树脂复合材料高速冲击损伤行为[J]. 复合材料学报, 2022, 39(10): 4935-4948. doi: 10.13801/j.cnki.fhclxb.20211103.003
引用本文: 曹俊超, 孙建波, 曹勇, 等. 混杂纤维增强环氧树脂复合材料高速冲击损伤行为[J]. 复合材料学报, 2022, 39(10): 4935-4948. doi: 10.13801/j.cnki.fhclxb.20211103.003
CAO Junchao, SUN Jianbo, CAO Yong, et al. High-velocity impact damage behavior of hybrid fiber reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4935-4948. doi: 10.13801/j.cnki.fhclxb.20211103.003
Citation: CAO Junchao, SUN Jianbo, CAO Yong, et al. High-velocity impact damage behavior of hybrid fiber reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4935-4948. doi: 10.13801/j.cnki.fhclxb.20211103.003

混杂纤维增强环氧树脂复合材料高速冲击损伤行为

doi: 10.13801/j.cnki.fhclxb.20211103.003
基金项目: 国家自然科学基金(12002286;12172303)
详细信息
    通讯作者:

    张超,博士,教授,博士生导师,研究方向为复合材料冲击动力学 E-mail:chaozhang@nwpu.edu.cn

  • 中图分类号: TB332

High-velocity impact damage behavior of hybrid fiber reinforced epoxy composites

  • 摘要: 开展了混杂纤维自动铺丝环氧树脂复合材料层合板高速冲击失效行为的研究。首先,测试了纯碳纤维增强环氧树脂层合板和纯芳纶纤维增强环氧树脂层合板的准静态力学性能,以获得其力学性能参数;然后,以芳纶纤维质量分数为基准,开展了不同混杂比层合板的钛合金弹体高速冲击试验,探究混杂比对混杂纤维增强环氧树脂复合材料抗冲击性能的影响;接着,建立了混杂纤维增强环氧树脂复合材料层合板的高速冲击有限元模型,基于Murakami-Ohno损伤演化理论建立了复合材料层合板的渐进损伤本构模型,并引入应变率效应系数以考虑应变率的影响,采用损伤变量和单元畸变协同控制单元删除。开展了不同混杂比层合板的高速冲击模拟,分别得到了相应的临界穿透速度。高速冲击试验结果表明,临界穿透速度随着混杂比的增加呈现逐渐增加的趋势,具有正混杂效应。通过与相应的准静态及高速冲击试验结果对比,该模型能够比较准确的预测混杂纤维增强环氧树脂复合材料层合板的准静态力学响应和高速冲击响应,临界穿透速度结果相差在4.5%以内。

     

  • 图  1  准静态试验系统及设备

    Figure  1.  Quasi-static test system and equipment

    图  2  高速冲击试验示意图

    Figure  2.  Schematic diagram of high-velocity impact test

    图  3  碳纤维层合板有限元模型

    Figure  3.  Finite element model of carbon fiber laminate

    图  4  钛合金弹体冲击混杂纤维层合板有限元模型

    Figure  4.  Finite element model of titanium alloy projectile impacting hybrid fiber laminates

    图  5  高速冲击有限元模型边界条件

    Figure  5.  Boundary conditions of finite element model of high-velocity impact

    U—Displacement

    图  6  碳纤维增强环氧树脂复合材料准静态模拟结果

    Figure  6.  Quasi-static simulation results of carbon fiber reinforced epoxy composites

    图  7  碳纤维增强环氧树脂复合材料准静态模拟与试验结果对比

    Figure  7.  Comparison of quasi-static simulation and test results of carbon fiber reinforced epoxy composites

    图  8  芳纶纤维增强环氧树脂复合材料准静态模拟与试验结果对比

    Figure  8.  Comparison of quasi-static simulation and test results of aramid fiber reinforced epoxy composites

    图  9  混杂纤维复合材料层合板冲击后破坏形貌

    Figure  9.  Damage morphologies of hybrid fiber composite laminates after impacting

    图  10  混杂纤维复合材料层合板高速冲击试验和拟合结果

    Figure  10.  High-velocity impact test and fitting results of hybrid fiber composite laminates

    图  11  钛合金弹体冲击碳纤维增强环氧树脂复合材料层合板的弹体速度变化历程

    Figure  11.  Velocity history of titanium alloy projectile impacting carbon fiber reinforced epoxy composite laminates

    图  12  钛合金弹体冲击芳纶纤维增强环氧树脂复合材料层合板的弹体速度变化历程

    Figure  12.  Velocity history of titanium alloy projectile impacting aramid fiber reinforced epoxy composite laminates

    图  13  钛合金弹体冲击混杂纤维复合材料层合板的弹体速度变化历程

    Figure  13.  Velocity history of titanium alloy projectile impacting hybrid fiber composite laminates

    表  1  混杂纤维复合材料混杂参数

    Table  1.   Hybrid parameters of hybrid fiber composites

    Hybrid ratio (by mass)/%Number of carbon unit layerNumber of aramid layerThickness of laminate/mm
    01808.586
    25.2014219.198
    36.0412309.324
    42.4011369.567
    67.706569.582
    79.3046810.068
    100.000839.960
    下载: 导出CSV

    表  2  碳纤维(CF)层合板和芳纶纤维(AF)层合板的弹性常数

    Table  2.   Elastic parameters of carbon fiber (CF) laminate and aramid fiber (AF) laminate

    MaterialE11/GPaE22=E33/GPaG12= G13/GPaG23/GPaν12ν13ν23
    CF laminate146.08.015.063.860.320.320.30
    AF laminate38.332.301.731.380.0680.330.33
    Notes: E11, E22, E33—Elastic modulus (direction 11, 22, 33); G12, G13, G23—Shear modulus (direction 12, 13, 23); ν12, ν13, ν23—Poission’s ratio (direction 12, 13, 23).
    下载: 导出CSV

    表  3  CF层合板和AF层合板的强度常数

    Table  3.   Strength parameters of CF laminate and AF laminate

    MaterialXT/MPaXC/MPaYT/MPaYC/MPaS12/MPaS23/MPaGft/(kJ·m−2)Gfc/(kJ·m−2)Gmt/(kJ·m−2)Gmc/(kJ·m−2)
    CF laminate2160129045.922699.399.31334011
    AF laminate923180668.017272.927.42004011
    Notes: XT, XC—Tensile strength, compression strength along fiber direction; YT, YC—Transverse tensile strength, transverse compression strength; S12, S23—Shear strength (direction 12, 23); Gft, Gfc, Gmt, Gmc—Fracture energy (fiber tensile, fiber compression, matrix tensile, matrix compression).
    下载: 导出CSV

    表  4  钛合金弹体性能参数

    Table  4.   Properties of titanium alloy projectile

    PropertyValue
    Density /(g·cm−3)4.4
    Elastic modulus E/GPa110
    Poission’s ratio ν0.31
    Mass/g66
    下载: 导出CSV

    表  5  混杂纤维复合材料层合板的临界穿透速度试验与模拟结果对比

    Table  5.   Comparison of test and simulation results of critical penetration velocity for hybrid fiber composite laminates

    Hybrid ratio
    /%
    Test/
    (m·s−1)
    Fitting/
    (m·s−1)
    Simulation/
    (m·s−1)
    Error/%
    0.00136135.500134-1380.37
    25.20173-174171.571170-1771.12
    36.04193187.062185-1900.23
    42.40188-189196.242200-2104.46
    67.70226232.530235-2402.14
    79.30256249.168243-2501.07
    100.00>256278.860265-2753.18
    Note: Error—Comparison between simulation results and fitting results.
    下载: 导出CSV
  • [1] 李西宁, 王悦舜, 周新房. 复合材料层合板分层损伤数值模拟方法研究现状[J]. 复合材料学报, 2021, 38(4):1076-1086. doi: 10.13801/j.cnki.fhclxb.20210302.006

    LI Xining, WANG Yueshun, ZHOU Xinfang. Status of numerical simulation methods for delamination damage of composite laminates[J]. Acta Materiae Compositae Sinica,2021,38(4):1076-1086(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210302.006
    [2] 严岩, 朱福和, 王伟, 等. 高性能纤维复合材料的研究及应用[J]. 合成技术及应用, 2015, 30(4):44-48. doi: 10.3969/j.issn.1006-334X.2015.04.010

    YAN Yan, ZHU Fuhe, WANG Wei, et al. Research and application of high performance fiber reinforced composites[J]. Synthetic Technology and Application,2015,30(4):44-48(in Chinese). doi: 10.3969/j.issn.1006-334X.2015.04.010
    [3] 赵立杰, 丁文喜, 杨康. 碳/芳纶纤维复合材料层合板力学性能分析[J]. 纤维复合材料, 2020, 144(4):18-21.

    ZHAO Lijie, DING Wenxi, YANG Kang. Analysis on mechanical properties of carbon/aramid fiber composite laminates[J]. Fiber Composites,2020,144(4):18-21(in Chinese).
    [4] 孙晓婷, 郭亚. 芳纶纤维的研究现状及应用[J]. 成都纺织高等专科学校学报, 2016, 33(3):164-168.

    SUN Xiaoting, GUO Ya. Research status and application of aramid fiber[J]. Journal of Chengdu Textile College,2016,33(3):164-168(in Chinese).
    [5] TABIEI A, YI W, GOLDBERG R. Non-linear strain rate dependent micro-mechanical composite material model for finite element impact and crashworthiness simulation[J]. International Journal of Non-Linear Mechanics,2005,40(7):957-970.
    [6] 肖露, 程建芳, 柴晓明, 等. 层间混杂复合材料的弹道侵彻性能研究[J]. 浙江理工大学学报, 2013, 30(4):471-476.

    XIAO Lu, CHENG Jianfang, CHAI Xiaoming, et al. Study on ballistic penetration property of interplay hybrid composite material[J]. Journal of Zhejiang Sci-Tech University,2013,30(4):471-476(in Chinese).
    [7] KIM D H, KIM H G, KIM H S. Design optimization and manufacture of hybrid glass/carbon fiber reinforced composite bumper beam for automobile vehicle[J]. Composite Structures,2015,131:742-752. doi: 10.1016/j.compstruct.2015.06.028
    [8] 章宇界. 缝合及层间/层内混杂复合材料冲击后弯曲性能的研究[D]. 上海: 东华大学, 2016.

    ZHANG Yujie. Bend-after-impact behaviors of stitched and interlaminar/intralaminar hybrid composites[D]. Shanghai: Donghua University, 2016(in Chinese).
    [9] 尹寒飞. 碳/芳混杂纤维编织复合材料力学变形测量与损伤检测研究[D]. 石家庄: 河北大学, 2020.

    YIN Hanfei. Mechanical deformation measurement and damage detection investigations of carbon/aramid hybrid woven composites[D]. Shijiazhuang: Hebei University, 2020(in Chinese).
    [10] SONG J H. Tensile and bending behavior for woven carbon-aramid/epoxy hybrid composites with various lamination structures by the VARTM method[J]. Fibers and Polymers,2016,17:1269-1276. doi: 10.1007/s12221-016-6240-2
    [11] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2):71-78. doi: 10.11868/j.issn.1001-4381.2019.000611

    QI Yexiong, JIANG Yaming, LI Jialu. Effect of hybrid ratio on mechanical properties of carbon/aramid hybrid fiber multi-layered biaxial weft knitted fabric reinforced composites[J]. Journal of Materials Engineering,2020,48(2):71-78(in Chinese). doi: 10.11868/j.issn.1001-4381.2019.000611
    [12] 鲍子贺, 牛一凡, 严炎, 等. 混杂纤维复合材料力学性能及其低速冲击性能研究[J]. 塑料工业, 2018, 46(8):80-84, 94. doi: 10.3969/j.issn.1005-5770.2018.08.019

    BAO Zihe, NIU Yifan, YAN Yan, et al. Investigation on the mechanical and low velocity impact properties of hybrid composite materials[J]. China Plastics Industry,2018,46(8):80-84, 94(in Chinese). doi: 10.3969/j.issn.1005-5770.2018.08.019
    [13] 张宗强, 王玉林, 万怡灶, 等. 三维混杂碳纤维/芳纶纤维增强尼龙复合材料力学性能研究[J]. 宇航材料工艺, 2004, 34(1):38-41, 46. doi: 10.3969/j.issn.1007-2330.2004.01.009

    ZHANG Zongqiang, WANG Yulin, WAN Yizao, et al. Study on mechanical properties of 3D-braided carbon fiber/Kevlar fiber hybrid composites[J]. Aerospace Material Technology,2004,34(1):38-41, 46(in Chinese). doi: 10.3969/j.issn.1007-2330.2004.01.009
    [14] HASHIM N, MAJID D L A, MAHDI E S, et al. Effect of fiber loading directions on the low cycle fatigue of intraply carbon-kevlar reinforced epoxy hybrid composites[J]. Composite Structures,2019,212:476-483. doi: 10.1016/j.compstruct.2019.01.036
    [15] 吴思保, 礼嵩明, 鹿海军. 芳纶纤维/碳纤维复层结构复合材料变形研究[J]. 复合材料科学与工程, 2019(6):90-94. doi: 10.3969/j.issn.1003-0999.2019.06.015

    WU Sibao, LI Songming, LU Haijun. Study on deformation of composites of aramid fiber/carbon fiber compound structure[J]. Composites Science and Enginnering,2019(6):90-94(in Chinese). doi: 10.3969/j.issn.1003-0999.2019.06.015
    [16] SEBAEY T A, WAGIH A. Flexural properties of notched carbon-aramid hybrid composite laminates[J]. Journal of Composite Materials,2019,53(28-30):4137-4148. doi: 10.1177/0021998319855773
    [17] ALSAADI M, BULUT M, ERKIG A, et al. Nano-silica inclusion effects on mechanical and dynamic behavior of fiber reinforced carbon/Kevlar with epoxy resin hybrid composites[J]. Composite Part B: Engineering,2018,152:169-179. doi: 10.1016/j.compositesb.2018.07.015
    [18] 王计真, 刘小川. 考虑面内载荷的复合材料层合板冲击性能[J]. 复合材料学报, 2020, 37(8):1868-1874. doi: 10.13801/j.cnki.fhclxb.20191125.001

    WANG Jizhen, LIU Xiaochuan. Impact resistance of composite panels under in-plane preloading[J]. Acta Materiae Composite Sinica,2020,37(8):1868-1874(in Chinese). doi: 10.13801/j.cnki.fhclxb.20191125.001
    [19] 杜春林, 陈雷, 韩璐, 等. 展宽机织复合材料破片高速冲击仿真模拟研究[J]. 机械科学与技术, 2020, 39(8):1299-1306. doi: 10.13433/j.cnki.1003-8728.20200160

    DU Chunlin, CHEN Lei, HAN Lu, et al. Simulation of high-speed impact for woven composite panel[J]. Mechanical Science and Technology for Aerospace Engineering,2020,39(8):1299-1306(in Chinese). doi: 10.13433/j.cnki.1003-8728.20200160
    [20] 史宝会. 混杂复合材料低速冲击力学性能实验研究[D]. 天津: 天津工业大学, 2016.

    SHI Baohui. Experimental research on low velocity impact mechanical properties of hybrid composites[D]. Tianjin: Tiangong University, 2016(in Chinese).
    [21] 柴晓明, 肖露, 程建芳, 等. 混杂防弹复合材料的结构优化及弹道机理分析[J]. 东华大学学报, 2015, 41(2):148-154. doi: 10.3969/j.issn.1671-0444.2015.02.003

    CHAI Xiaoming, XIAO Lu, CHENG Jianfang, et al. Structural optimization and ballistic mechanism analysis of hybrid bulletproof composite[J]. Journal of Donghua University,2015,41(2):148-154(in Chinese). doi: 10.3969/j.issn.1671-0444.2015.02.003
    [22] HAZELL P J, THOMAS G A. A study on the energy dissipation of several different CFRP-based targets completely penetrated by a high velocity projectile[J]. Composite Structures,2009,91(1):103-109. doi: 10.1016/j.compstruct.2009.04.036
    [23] 易凯, 孙建波, 杨智勇, 等. 混杂纤维复合材料层板的抗弹冲击性能[J]. 宇航材料工艺, 2019, 49(1):82-85. doi: 10.12044/j.issn.1007-2330.2019.01.016

    YI Kai, SUN Jianbo, YANG Zhiyong, et al. Ballistic impact resistance of hybrid composite materials[J]. Aerospace Material Technology,2019,49(1):82-85(in Chinese). doi: 10.12044/j.issn.1007-2330.2019.01.016
    [24] SUN Y, TANG M, RONG Z, et al. An experimental investigation on the low-velocity impact response of carbon-aramid/epoxy hybrid composite laminates[J]. Journal of Reinforced Plastics and Composites,2017,36(6):422-434. doi: 10.1177/0731684416680893
    [25] 王燕杰, 吴晓青, 陈利. 混杂纤维复合材料头盔的设计与制备[J]. 武汉理工大学学报, 2009, 31(4):1-3. doi: 10.3963/j.issn.1671-4431.2009.04.001

    WANG Yanjie, WU Xiaoqing, CHEN Li. Design and fabrication of hybrid fiber composite of helmet[J]. Journal of Wuhan University of Technology,2009,31(4):1-3(in Chinese). doi: 10.3963/j.issn.1671-4431.2009.04.001
    [26] XI J, YU J, YU Z. The effect of single and double-wefted styles on the in-plane impact behavior of fabric carbon-aramid/epoxy intralayer hybrid composite laminates[J]. Fibers and Polymers,2019,20:1301-1310. doi: 10.1007/s12221-019-1008-0
    [27] MA Y, SUGAHARA T, YANG Y, et al. A study on the energy absorption properties of carbon/aramid fiber filament winding composite tube[J]. Composite Structures,2015,123:301-311. doi: 10.1016/j.compstruct.2014.12.067
    [28] 武晓东, 夏凡, 吴晓青. 不同纤维面层对泡沫夹层复合材料低速冲击性能的影响[J]. 纤维复合材料, 2010, 27(4):8-11. doi: 10.3969/j.issn.1003-6423.2010.04.002

    WU Xiaodong, XIA Fan, WU Xiaoqing. Work on low-velocity impact properties of foam sandwich composites with various face sheets[J]. Fiber Composites,2010,27(4):8-11(in Chinese). doi: 10.3969/j.issn.1003-6423.2010.04.002
    [29] GUSTIN J, JONESON A, MAHINFALAH M, et al. Low velocity impact of combination Kevlar/carbon fiber sandwich composites[J]. Composite Structures,2005,69(4):396-406. doi: 10.1016/j.compstruct.2004.07.020
    [30] ASTM International. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039M—17[S]. West Conshohocken: ASTM International, 2017.
    [31] ASTM International. Standard test method for compressive properties of polymer matrix composite materials using a combined loading compression test fixture: ASTM D6641M—16[S]. West Conshohocken: ASTM International, 2016.
    [32] 古兴瑾, 许希武. 纤维增强复合材料层板高速冲击损伤数值模拟[J]. 复合材料学报, 2012, 29(1):150-161.

    GU Xingjin, XU Xiwu. Numerical simulation of damage in fiber reinforced composite laminates under high velocity impact[J]. Acta Materiae Composite Sinica,2012,29(1):150-161(in Chinese).
    [33] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1980,47(2):329-334. doi: 10.1115/1.3153664
    [34] HOU J P, PETRINIC N, RUIZ C, et al. Prediction of impact damage in composite plates[J]. Composites Science and Technology,2000,60(2):273-281. doi: 10.1016/S0266-3538(99)00126-8
    [35] ZHAO Z, DANG H, LIU P, et al. On the impact failure behavior of triaxially braided composites subjected to metallic plate projectile[J]. Composites Part B: Engineering,2020,186:107816. doi: 10.1016/j.compositesb.2020.107816
    [36] ABIR M R, TAY T E, RIDHA M, et al. On the relationship between failure mechanism and compression after impact (CAI) strength in composites[J]. Composite Structures,2017,182:242-250. doi: 10.1016/j.compstruct.2017.09.038
    [37] 刘鹏, 郭亚洲, 赵振强, 等. 二维三轴编织复合材料压缩失效行为的细观有限元模拟[J]. 航空学报, 2019, 40(7):114-128.

    LIU Peng, GUO Yazhou, ZHAO Zhenqiang, et al. Meso-scale finite element simulation of compressive failure behavior of two-dimensional triaxially braided composite[J]. Acta Aeronautica et Astronautica Sinica,2019,40(7):114-128(in Chinese).
    [38] 张晨旭. 复合材料界面率相关本构模型的适用性研究[D]. 西安: 西北工业大学, 2021.

    ZHANG Chenxu. Assessment of different rate-dependent cohesive models for composite laminates under impact loading[D]. Xi’an: Northwestern Polytechnical University, 2021(in Chinese).
    [39] BAZANT Z P, OH B H. Crack band theory for fracture of concrete[J]. Materials and Structures,1983,16(3):155-177. doi: 10.1007/BF02486267
    [40] 吕青泉, 赵振强, 李超, 等. 2.5D机织复合材料的渐进损伤与失效模拟[J]. 复合材料学报, 2021, 38(8):2747-2757. doi: 10.13801/j.cnki.fhclxb.20201116.006

    LV Qingquan, ZHAO Zhenqiang, LI Chao, et al. Progressive damage and failure simulation of 2.5D woven composites[J]. Acta Materiae Compositae Sinica,2021,38(8):2747-2757(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201116.006
    [41] 叶辉, 朱艳荣, 蒲永峰. 纤维增强复合材料应变率效应的数值仿真[J]. 吉林大学学报, 2019, 49(5):1622-1629. doi: 10.13229/j.cnki.jdxbgxb20180430

    YE Hui, ZHU Yanrong, PU Yongfeng. Numerical simulation of strain rate effect of fiber reinforced composites[J]. Journal of Jilin University,2019,49(5):1622-1629(in Chinese). doi: 10.13229/j.cnki.jdxbgxb20180430
    [42] 刘鹏. 二维三轴编织复合材料冲击损伤行为的细观有限元模拟[D]. 西安: 西北工业大学, 2020.

    LIU Peng. Meso-scale finite element simulation on impact failure behavior of two-dimensional triaxially braided composites[D]. Xi’an: Northwestern Polytechnical University, 2020(in Chinese).
    [43] 黄克智, 黄永刚. 高等固体力学[M]. 北京: 清华大学出版社, 2013.

    HUANG Kezhi, HUANG Yonggang. Advanced solid mechanics[M]. Beijing: Tsinghua University Press, 2013(in Chinese).
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  630
  • HTML全文浏览量:  298
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01
  • 修回日期:  2021-10-12
  • 录用日期:  2021-10-22
  • 网络出版日期:  2021-11-04
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回