留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双导热网络功能化氮化硼纳米片/聚氨酯复合材料的制备与导热性能

石林 马忠雷 景佳瑶 向小莲 李桢 李运涛

石林, 马忠雷, 景佳瑶, 等. 双导热网络功能化氮化硼纳米片/聚氨酯复合材料的制备与导热性能[J]. 复合材料学报, 2022, 39(10): 4531-4539. doi: 10.13801/j.cnki.fhclxb.20211028.007
引用本文: 石林, 马忠雷, 景佳瑶, 等. 双导热网络功能化氮化硼纳米片/聚氨酯复合材料的制备与导热性能[J]. 复合材料学报, 2022, 39(10): 4531-4539. doi: 10.13801/j.cnki.fhclxb.20211028.007
SHI Lin, MA Zhonglei, JING Jiayao, et al. Preparation and thermally conductive properties of functionalized boron nitride nanosheets/polyurethane composites with double heat-conduction networks[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4531-4539. doi: 10.13801/j.cnki.fhclxb.20211028.007
Citation: SHI Lin, MA Zhonglei, JING Jiayao, et al. Preparation and thermally conductive properties of functionalized boron nitride nanosheets/polyurethane composites with double heat-conduction networks[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4531-4539. doi: 10.13801/j.cnki.fhclxb.20211028.007

双导热网络功能化氮化硼纳米片/聚氨酯复合材料的制备与导热性能

doi: 10.13801/j.cnki.fhclxb.20211028.007
基金项目: 国家自然科学基金(51903145);中央高校基本科研业务费专项资金(D5000210627)
详细信息
    通讯作者:

    马忠雷,博士,副教授,硕士生导师,研究方向为功能高分子复合材料 E-mail:mazl@nwpu.edu.cn

    李运涛,硕士,教授,硕士生导师,研究方向为纳米材料的表面及界面 E-mail:liyt@sust.edu.cn

  • 中图分类号: TB332

Preparation and thermally conductive properties of functionalized boron nitride nanosheets/polyurethane composites with double heat-conduction networks

  • 摘要: 研发低填充且高导热的聚合物基导热复合材料是目前亟需解决的瓶颈问题。基于层层氢键组装,以聚氨酯(PU)开孔泡沫为模板,以聚多巴胺功能化改性氮化硼纳米片(BNNS@PDA)为导热填料,采用浸涂-热压成型法制得低填充、高导热BNNS@PDA/PU复合材料。深入研究了BNNS@PDA和BNNS@PDA/PU复合材料的微观结构、导热性能和热稳定性等。结果表明,通过聚多巴胺(PDA)对BNNS进行表面功能化改性能够使其良好地负载于PU开孔泡沫的三维骨架表面。通过热压成型形成以PU骨架为主要导热网络、以PU骨架表面包覆的BNNS@PDA为次级导热网络的高效双重三维导热网络结构,从而降低导热复合材料的界面热阻。当BNNS@PDA填充量为16.3wt%时,双导热网络BNNS@PDA/PU复合材料的热导率达到0.783 W/(m·K),与单导热网络PU的热导率(0.387 W/(m·K))相比提高了102.3%。

     

  • 图  1  聚多巴胺功能化改性氮化硼纳米片(BNNS@PDA) (a)和BNNS@PDA/聚氨酯(PU)复合材料 (b) 的制备示意图

    Figure  1.  Schematic illustration for fabrication of polydopamine functionalized nitride boron nanosheets (BNNS@PDA) (a) and BNNS@PDA/polyurethane (PU) composites (b)

    BN—Boron nitride; IPA—Isopropyl alcohol

    图  2  BN ((a), (a'))、BNNS ((b), (b')) 和BNNS@PDA ((c), (c')) 静置24 h前后的分散液数码照片;BNNS (b'') 和BNNS@PDA (c'') 的SEM图像

    Figure  2.  Digital photographs of BN ((a), (a')), BNNS ((b), (b')) and BNNS@PDA ((c), (c')) dispersion before and after standing for 24 h; SEM images of BNNS (b'') and BNNS@PDA (c'')

    图  3  (a) BN、BNNS、BNNS@PDA、PU开孔泡沫和BNNS@PDA/PU复合材料的FTIR图谱;(b) BN、BNNS和BNNS@PDA的XRD图谱;BNNS和BNNS@PDA的XPS图谱 (c) 和TGA曲线 (d)

    Figure  3.  (a) FTIR spectras of BN, BNNS, BNNS@PDA, porous PU foams and BNNS@PDA/PU composites; (b) XRD patterns of BN, BNNS and BNNS@PDA; XPS spectras (c) and TGA curves (d) of BNNS and BNNS@PDA

    图  4  PU开孔泡沫的数码照片 (a) 和SEM图像 (a') 及单导热网络PU材料的SEM图像 (a'');BNNS@PDA/PU复合泡沫数码照片 (b)、SEM图像 (b') 和B元素EDS分布图像 (b'');BNNS@PDA/PU复合材料数码照片 (c) 和断面SEM图像 ((c'), (c''))

    Figure  4.  Digital photo (a) and SEM image of porous PU foams (a') and SEM image of PU with single heat-conduction network (a''); Digital photo (b), SEM image (b') and EDS mapping image of B (b'') of BNNS@PDA/PU composite foams; Digital photo (c), SEM images ((c'), (c'')) of BNNS@PDA/PU composites

    图  5  BNNS@PDA/PU复合材料的热导率

    Figure  5.  Thermal conductivity of BNNS@PDA/PU composites

    图  6  BNNS@PDA/PU复合材料的单导热网络 (a) 与双导热网络 (b) 导热机制

    Figure  6.  Heat conduction mechanism of single (a) and double (b) heat-conduction networks of BNNS@PDA/PU composites

    图  7  单导热网络PU (a) 和BNNS@PDA/PU复合材料 (b) 的红外热成像图像

    Figure  7.  Infrared thermal images of PU with single heat-conduction network (a) and BNNS@PDA/PU composites (b)

    图  8  单导热网络PU与BNNS@PDA/PU复合材料受热温度变化曲线

    Figure  8.  Heating temperature curves of PU with single heat-conduction network and BNNS@PDA/PU composites

    图  9  BNNS@PDA/PU复合材料的TGA曲线

    Figure  9.  TGA curves of BNNS@PDA/PU composites

  • [1] SONG Y, JIANG F, SONG N, et al. Multilayered structural design of fexible flms for smart thermal management[J]. Composites Part A: Applied Science and Manufacturing,2021,141:106222. doi: 10.1016/j.compositesa.2020.106222
    [2] CHEN J, HUANG X Y, ZHU Y K, et al. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal managementcapability[J]. Advanced Functional Materials,2017,27(5):1604754. doi: 10.1002/adfm.201604754
    [3] ZENG X L, SUN J L, YAO Y M, et al. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity[J]. ACS Nano,2017,11(5):5167-5178. doi: 10.1021/acsnano.7b02359
    [4] GU J W, RUAN K P. Breaking through bottlenecks for thermally conductive polymer composites: A perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics[J]. Nano-Micro Letters,2021,13:110. doi: 10.1007/s40820-021-00640-4
    [5] ZHENG D W, PAUL P, MEZIANI M J, et al. Dispersion of high-quality boron nitride nanosheets in polyethylene for nanocomposites of superior thermal transport properties[J]. Nanoscale Advances,2020,2(6):2507-2513. doi: 10.1039/D0NA00190B
    [6] TESSEMA A, DAN Z, MOLL J, et al. Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites[J]. Polymer Testing,2016,57:101-106.
    [7] CHO H B, TOKOI Y, TANAKA S, et al. Modification of BN nanosheets and their thermal conducting properties in nanocomposite film with polysiloxane according to the orientation of BN[J]. Composites Science and Technology,2011,71(8):1046-1052. doi: 10.1016/j.compscitech.2011.03.002
    [8] FU L, WANG T, YU J H, et al. An high-performance heat spreader fabricated with boron nitride nanosheets[J]. 2D Materials,2017,4:025047. doi: 10.1088/2053-1583/aa636e
    [9] YU C, ZHANG J, LI Z, et al. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 98: 25-31.
    [10] CHEN X, LIM J, YAN W, et al. Salt template assisted BN scaffold fabrication towards highly thermal conductive epoxy composites[J]. ACS Applied Materials & Interfaces,2020,12(14):16987-16996.
    [11] WANG X W, WU P Y. Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading[J]. Chemical Engineering Journal,2018,348:723-731. doi: 10.1016/j.cej.2018.04.196
    [12] ZHU Q, CHU Y, WANG Z, et al. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material[J]. Journal of Materials Chemistry A,2013,1(17):5386-5393. doi: 10.1039/c3ta00125c
    [13] SU B, WANG S, SONG Y, et al. Utilizing super hydrophilic materials to manipulate oil droplets arbitrarily in water[J]. Soft Matter,2011,7(11):5144-5149. doi: 10.1039/c0sm01480j
    [14] ADEBAJO M O, FROST R L, KLOPROGGE J T, et al. Porous materials for oil spill cleanup: A review of synthesis and absorbing properties[J]. Journal of Porous Materials,2003,10:159-170. doi: 10.1023/A:1027484117065
    [15] ZHANG X, ZHOU L, LIU K, et al. Bioinspired multifunctional foam with self-cleaning and oil/water separation[J]. Advanced Functional Materials,2013,23(22):2881-2886. doi: 10.1002/adfm.201202662
    [16] 杨振生, 张阳阳, 李春利, 等. 疏水聚氨酯海绵吸油材料研究进展[J]. 化工新型材料, 2019, 47(8):34-38.

    YANG Zhensheng, ZHANG Yangyang, LI Chunli, et al. Progress of hydrophobic polyurethane sponge used as oil sorbent material[J]. New Chemical Materials,2019,47(8):34-38(in Chinese).
    [17] YANG W, WANG Y F, LI Y, et al. Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation[J]. Composites Part B: Engineering,2021,224:109168. doi: 10.1016/j.compositesb.2021.109168
    [18] ZENG X, YAO Y, GONG Z, et al. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J]. Small,2015,11(46):6205-6213. doi: 10.1002/smll.201502173
    [19] MA T B, ZHAO Y S, RUAN K P, et al. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nano-fiber composite papers with nacre-mimetic layered structures[J]. ACS Applied Materials & Interfaces,2020,12(1):1677-1686.
    [20] LIU Y L, AI K L, LU L H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chemical Reviews,2014,114(9):5057-5115. doi: 10.1021/cr400407a
    [21] 余翠平. 有序排列氮化硼/聚合物复合材料的可控制备与导热性能研究[D]. 西安: 西北工业大学, 2018.

    YU Cuiping. Study on controllable preparation and thermal conductivity of aligned boron nitride/polymer composites[D]. Xi'an: Northwestern Polytechnical University, 2018(in Chinese).
    [22] 张军, 郑昌仁, 冯今明. 高聚物的热传导性质[J]. 高分子通报, 2001(6):54-59. doi: 10.3969/j.issn.1003-3726.2001.06.007

    ZHANG Jun, ZHENG Changren, FENG Jinming. Survey of thermal conductivity property of polymer[J]. Polymer Bulletin,2001(6):54-59(in Chinese). doi: 10.3969/j.issn.1003-3726.2001.06.007
  • 加载中
图(9)
计量
  • 文章访问数:  897
  • HTML全文浏览量:  471
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 修回日期:  2021-10-04
  • 录用日期:  2021-10-23
  • 网络出版日期:  2021-10-29
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回