留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三轴受压粉煤灰陶粒轻骨料混凝土力学性能试验

陈宇良 朱玲 吉云鹏 吴辉琴 叶培欢

陈宇良, 朱玲, 吉云鹏, 等. 三轴受压粉煤灰陶粒轻骨料混凝土力学性能试验[J]. 复合材料学报, 2022, 39(10): 4801-4812. doi: 10.13801/j.cnki.fhclxb.20211028.005
引用本文: 陈宇良, 朱玲, 吉云鹏, 等. 三轴受压粉煤灰陶粒轻骨料混凝土力学性能试验[J]. 复合材料学报, 2022, 39(10): 4801-4812. doi: 10.13801/j.cnki.fhclxb.20211028.005
CHEN Yuliang, ZHU Ling, JI Yunpeng, et al. Experiment study on mechanical properties of fly ash ceramsite lightweight aggregate concrete under triaxial compression[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4801-4812. doi: 10.13801/j.cnki.fhclxb.20211028.005
Citation: CHEN Yuliang, ZHU Ling, JI Yunpeng, et al. Experiment study on mechanical properties of fly ash ceramsite lightweight aggregate concrete under triaxial compression[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4801-4812. doi: 10.13801/j.cnki.fhclxb.20211028.005

三轴受压粉煤灰陶粒轻骨料混凝土力学性能试验

doi: 10.13801/j.cnki.fhclxb.20211028.005
基金项目: 国家自然科学基金(51908141);中国博士后科学基金(2021M693854);广西科技基地和人才专项(AD19110068);广西高校中青年教师科研基础能力提升项目(2019KY0361);广西重点实验室开放课题项目(2019ZDK038);广西研究生教育创新计划项目(YCSW2021319)
详细信息
    通讯作者:

    陈宇良,博士,教授,硕士生导师,研究方向为再生混凝土结构、钢-混凝土组合结构 E-mail:ylchen@gxust.edu.cn

  • 中图分类号: TB331

Experiment study on mechanical properties of fly ash ceramsite lightweight aggregate concrete under triaxial compression

  • 摘要: 以粉煤灰陶粒轻骨料浸泡时间、强度等级、侧向围压为变化参数,共设计120个粉煤灰陶粒轻骨料混凝土试件进行常规三轴受压试验,研究其在三轴应力状态下的力学性能。试验观察了轻骨料混凝土的破坏过程及破坏形态,获取了三轴受力状态下的应力-应变全过程曲线,分析了各变化参数对其三轴受压力学性能的影响规律。研究结果表明:随着围压值的增大,试件破坏由竖向劈裂破坏变为斜向剪切破坏,当围压值大于12 MPa时,试件则表现为外表无明显裂缝的鼓起破坏;应力-应变曲线受围压值影响较大,受骨料浸泡时间和强度等级的影响较小,围压值大于12 MPa后,曲线不再出现下降段;峰值应力随骨料浸泡时间、强度等级、侧向围压的增大而增大;峰值应变受陶粒浸泡时间的影响不大,随强度等级的增大而减小,随围压值的增大而增大;弹性模量随强度等级和围压值的增大而增大,受骨料浸泡时间的影响不显著。

     

  • 图  1  加载装置及加载制度

    Figure  1.  Test setup and specimens mechanical model

    σv—Axial stress; σw—Confining pressure; σi—Target confining pressure

    图  2  三轴受压下粉煤灰陶粒轻骨料混凝土试件的典型破坏形态

    Figure  2.  Typical failure form of fly ash ceramsite lightweight concrete specimens under triaxial compression

    图  3  三轴受压下粉煤灰陶粒轻骨料混凝土应力-应变曲线

    Figure  3.  Stress-strain curves of fly ash ceramsite lightweight aggregate concrete under triaxial compression

    图  4  粉煤灰陶粒轻骨料混凝土峰值应力的离散性

    Figure  4.  Dispersion of peak stress in fly ash ceramsite lightweight aggregate concrete

    图  5  浸泡时间对粉煤灰陶粒轻骨料混凝土峰值应力的影响

    Figure  5.  Influence of soaking time on peak stress of fly ash ceramsite lightweight aggregate concrete

    图  6  强度等级对粉煤灰陶粒轻骨料混凝土峰值应力的影响

    Figure  6.  Influence of strength grade on peak stress of fly ash ceramsite lightweight aggregate concrete

    图  7  侧向围压值与粉煤灰陶粒轻骨料混凝土峰值应力的关系

    Figure  7.  Relationship between peak stress of fly ash ceramsite lightweight aggregate concrete and confining pressure

    σ0—Peak stress under uniaxial compression

    图  8  浸泡时间与粉煤灰陶粒轻骨料混凝土峰值应变的关系

    Figure  8.  Relationship between peak strain of fly ash ceramsite lightweight aggregate concrete and different soaking time

    图  9  不同强度等级粉煤灰陶粒轻骨料混凝土峰值应变对比

    Figure  9.  Comparison of peak strain of fly ash ceramsite lightweight aggregate concrete under strength grades

    图  10  侧向围压值与粉煤灰陶粒轻骨料混凝土峰值应变的关系

    Figure  10.  Relationship between peak strain of fly ash ceramsite lightweight aggregate concrete and lateral confinement

    ε0—Peak strain under uniaxial compression

    图  11  不同浸泡时间下粉煤灰陶粒轻骨料混凝土的弹性模量对比

    Figure  11.  Comparison of elastic modulus of fly ash ceramsite lightweight aggregate concrete under different soaking time

    图  12  不同强度等级粉煤灰陶粒轻骨料混凝土的弹性模量比值

    Figure  12.  Ratio of elastic modulus of fly ash ceramsite lightweight aggregate concrete with different strength grades

    图  13  侧向围压值与粉煤灰陶粒轻骨料混凝土弹性模量的关系

    Figure  13.  Relationship between elastic modulus of fly ash ceramsite lightweight aggregate concrete and lateral confinement

    E0—Elastic modulus under uniaxial compression

    表  1  粉煤灰高强陶粒的物理性能

    Table  1.   Physical performance of ceramsite

    Fly ash content/wt%Bulk density/(kg·m−3)Cylinder compressive strength/MPaWater absorption for
    1 h/%
    Water absorption for
    12 h/%
    Saturated water absorption/%
    806507.214.9616.1217.22
    下载: 导出CSV

    表  2  粉煤灰主要化学成分

    Table  2.   Main chemical composition of fly ash

    Compound typeSiO2Fe2O3Al2O3CaOMgOSO3
    Content/wt%44.8416.8123.433.091.321.41
    下载: 导出CSV

    表  3  粉煤灰陶粒轻骨料混凝土配合比(kg/m3)

    Table  3.   Mix proportion of fly ash ceramsite lightweight aggregate concrete (kg/m3)

    Strength levelCementFly ash ceramsiteSandFly ashWaterWater-binder ratio
    LC20350420.3667.475.01700.40
    LC30400407.7634.347.41700.38
    下载: 导出CSV

    表  4  粉煤灰陶粒轻骨料混凝土的特征点参数

    Table  4.   Characteristic point parameters of fly ash ceramsite lightweight aggregate concrete

    SpecimenEu/GPaσu/MPaεu/10−3
    1h-LC20-0MPa3.0318.105.60
    1h-LC20-6MPa4.2954.3022.02
    1h-LC20-12MPa4.4275.9240.54
    1h-LC20-18MPa4.93101.9351.79
    1h-LC20-24MPa5.57115.6172.54
    1h-LC20-30MPa8.05133.6585.62
    1h-LC20-36MPa8.66151.90102.79
    1h-LC20-42MPa7.79167.17107.20
    12h-LC20-0MPa3.5118.098.86
    12h-LC20-6MPa5.4354.2920.17
    12h-LC20-12MPa4.2873.6446.14
    12h-LC20-18MPa6.2092.2561.61
    12h-LC20-24MPa6.11109.4971.04
    12h-LC20-30MPa4.66131.77105.74
    12h-LC20-36MPa6.32145.72109.34
    12h-LC20-42MPa7.18162.35120.56
    1h-LC30-0MPa3.2619.037.23
    1h-LC30-3MPa4.4044.4310.97
    1h-LC30-6MPa6.2056.0116.66
    1h-LC30-9MPa4.0664.3429.73
    1h-LC30-12MPa4.2977.4544.24
    1h-LC30-15MPa4.1387.7649.88
    1h-LC30-18MPa5.5193.7948.95
    1h-LC30-21MPa7.53100.3671.99
    1h-LC30-24MPa7.20114.1172.47
    1h-LC30-27MPa8.32115.7568.10
    1h-LC30-30MPa4.15130.5798.88
    1h-LC30-33MPa6.12138.4395.86
    12h-LC30-0MPa4.2222.116.98
    12h-LC30-3MPa4.6946.8315.84
    12h-LC30-6MPa5.6559.0216.68
    12h-LC30-9MPa4.7471.2527.43
    12h-LC30-12MPa5.1179.0236.21
    12h-LC30-15MPa4.8488.9148.05
    12h-LC30-18MPa6.5493.8866.50
    12h-LC30-21MPa6.75108.4959.92
    12h-LC30-24MPa6.20115.7662.10
    12h-LC30-27MPa5.80126.5576.79
    12h-LC30-30MPa8.11136.5281.71
    12h-LC30-33MPa7.12140.4384.55
    Notes: Eu—Elastic modulus; σu—Peak stress; εu—Peak strain.
    下载: 导出CSV
  • [1] 刘喜, 吴涛, 魏慧, 等. 箍筋约束轻骨料混凝土轴心受压应力-应变曲线研究[J]. 建筑结构学报, 2021, 42(3):134-143. doi: 10.14006/j.jzjgxb.2018.0642

    LIU Xi, WU Tao, WEI Hui, et al. Axial compressive stress-strain relationship of confined lightweight aggregate concrete with stirrups[J]. Journal of Building Structures,2021,42(3):134-143(in Chinese). doi: 10.14006/j.jzjgxb.2018.0642
    [2] 余振鹏, 黄侨, 赵志青, 等. 自密实轻骨料混凝土压-剪复合受力力学性能[J]. 复合材料学报, 2019, 36(8):1984-1994. doi: 10.13801/j.cnki.fhclxb.20181030.002

    YU Zhenpeng, HUANG Qiao, ZHAO Zhiqing, et al. Mechanical property of self-compacting lightweight aggregate concrete under combined compression-shear stress[J]. Acta Materiae Compositae Sinica,2019,36(8):1984-1994(in Chinese). doi: 10.13801/j.cnki.fhclxb.20181030.002
    [3] 梁圣, 崔宏志, 徐丹玥. 纳米SiO2改性轻骨料混凝土性能[J]. 复合材料学报, 2019, 36(2):498-505. doi: 10.13801/j.cnki.fhclxb.20180330.001

    LIANG Sheng, CUI Hongzhi, XU Danyue. Properties of nano-SiO2 modified lightweight aggregate concrete[J]. Acta Materiae Compositae Sinica,2019,36(2):498-505(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180330.001
    [4] American Concrete Institute. Building code requirements for structural concrete and commentary on building code requirements for structural concrete: ACI 318-14[S]. Farmington Hills: American Concrete Institute Publisher, 2014.
    [5] 中华人民共和国住房和城乡建设部. 轻骨料混凝土结构技术规程: JGJ/T 12—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Construction of the People's Republic of China. Technical specification for lightweight aggregate concrete structures: JGJ/T 12—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [6] SANTHA K G, MISHRA A K. Influence of granite fine powder on the performance of cellular Light weight concrete[J]. Journal of Building Engineering,2021,40(11):102707. doi: /10.1016/j.jobe.2021.102707
    [7] 王万祯, 郭鸣鸣, 吴晓聪. 主方支圆钢管轻骨料混凝土K型节点承载力[J]. 华中科技大学学报(自然科学版), 2020, 48(5):61-67. doi: 10.13245/j.hust.200512

    WANG Wanzhen, GUO Mingming, WU Xiaocong. Bearing capacity of K-joint of light-aggregate concrete steel tube with main square branch[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2020,48(5):61-67(in Chinese). doi: 10.13245/j.hust.200512
    [8] 王万祯, 李华, 吴晓聪. 方钢管轻骨料混凝土加劲TY型节点承载力研究[J]. 华中科技大学学报(自然科学版), 2020, 48(8):33-38. doi: 10.13245/j.hust.200806

    WANG Wanzhen, LI Hua, WU Xiaocong. Study on the bearing capacity of TY-type joints reinforced with square steel tube lightweight aggregate concrete[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2020,48(8):33-38(in Chinese). doi: 10.13245/j.hust.200806
    [9] FEDEROWICZ K, TECHMAN M, SANYTSKY M, et al. Modification of lightweight aggregate concretes with silica nanoparticles-A review[J]. Materials,2021,14(15):4242. doi: 10.3390/ma14154242
    [10] 吴涛, 魏慧, 刘喜, 等. 箍筋约束高强轻骨料混凝土柱轴压性能试验研究[J]. 工程力学, 2018, 35(2):203-213.

    WU Tao, WEI Hui, LIU Xi, et al. Experimental study on axial compression performance of high-strength lightweight aggregate concrete columns confined by stirrups[J]. Engineering Mechanics,2018,35(2):203-213(in Chinese).
    [11] 吴涛, 杨雪, 刘喜. 钢-聚丙烯混杂纤维自密实轻骨料混凝土性能[J]. 建筑材料学报, 2021, 24(2):268-275, 282. doi: 10.3969/j.issn.1007-9629.2021.02.006

    WU Tao, YANG Xue, LIU Xi. Properties of self-compacting lightweight concrete reinforced with hybrid steel and polypropylene fibers[J]. Journal of Building Materials,2021,24(2):268-275, 282(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.02.006
    [12] 王新堂, 周明, 王万祯, 等. 轻骨料钢管混凝土短柱受火后力学性能的试验研究[J]. 土木工程学报, 2011, 44(12):34-41. doi: 10.15951/j.tmgcxb.2011.12.013

    WANG Xintang, ZHOU Ming, WANG Wanzhen, et al. Experimental study on mechanical properties of lightweight aggregate concrete-filled steel tube short columns after exposure to fire[J]. China Civil Engineering Journal,2011,44(12):34-41(in Chinese). doi: 10.15951/j.tmgcxb.2011.12.013
    [13] 任鹏飞, 王新堂, 梧松. 轻骨料混凝土-薄壁钢梁组合楼板受火后承载性能试验研究[J]. 建筑结构学报, 2019, 40(4):56-63. doi: 10.14006/j.jzjgxb.2019.04.006

    REN Pengfei, WANG Xintang, WU Song. Experimental study on post-fire bearing capacity of composite floor of lightweight aggregate concrete-thin walled steel beam[J]. Journal of Building Structures,2019,40(4):56-63(in Chinese). doi: 10.14006/j.jzjgxb.2019.04.006
    [14] 叶艳霞, 王宗彬, 谢夫林, 等. 钢纤维增强高强轻骨料混凝土的力学性能[J]. 建筑材料学报, 2021, 24(1):63-70. doi: 10.3969/j.issn.1007-9629.2021.01.009

    YE Yanxia, WANG Zongbin, XIE Fulin, et al. Mechanical properties of steel fiber reinforced high-strength lightweight aggregate concrete[J]. Journal of Building Materials,2021,24(1):63-70(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.01.009
    [15] 叶艳霞, 王宗彬, 彭琼, 等. 微细钢纤维高强轻骨料混凝土静力试验研究[J]. 建筑材料学报, 2020, 23(4):955-962. doi: 10.3969/j.issn.1007-9629.2020.04.031

    YE Yanxia, WANG Zongbin, PENG Qiong, et al. Static test of micro streel fiber high-strength lightweight aggregate concrete[J]. Journal of Building Materials,2020,23(4):955-962(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.04.031
    [16] 苏洁, 池寅, 孟宽. 钢-聚丙烯混杂纤维混凝土的真三轴强度试验研究[J]. 武汉大学学报(工学版), 2018, 51(1):40-46, 59. doi: 10.14188/j.1671-8844.2018-01-006

    SU Jie, CHI Yin, MENG Kuan. Experimental study of strength of steel-polypropylene hybrid fiber reinforced concrete subjected to true triaxial compression[J]. Engi-neering Journal of Wuhan University,2018,51(1):40-46, 59(in Chinese). doi: 10.14188/j.1671-8844.2018-01-006
    [17] 余振鹏, 黄侨, 谢兴华. 普通混凝土和轻骨料混凝土双轴加载试验研究[J]. 建筑材料学报, 2019, 22(3):371-377. doi: 10.3969/j.issn.1007-9629.2019.03.007

    YU Zhenpeng, HUANG Qiao, XIE Xinghua. Experimental study on mechanical properties of ordinary concrete and lightweight aggregate concrete based on biaxial loading[J]. Journal of Building Materials,2019,22(3):371-377(in Chinese). doi: 10.3969/j.issn.1007-9629.2019.03.007
    [18] 赵东拂, 高海静, 杨健辉. 混凝土双轴拉压、三轴拉压压变幅疲劳性能研究[J]. 工程力学, 2017, 34(8):154-160.

    ZHAO Dongfu, GAO Haijing, YANG Jianhui. Research on variable amplitude fatigue performance of concrete in biaxial tension and compression and triaxial tension and compression[J]. Engineering Mechanics,2017,34(8):154-160(in Chinese).
    [19] 王四巍, 孙逢涛, 吴华. 三轴应力下再生粗骨料塑性混凝土的力学性能和破坏准则[J]. 建筑材料学报, 2020, 23(2):454-459.

    WANG Siwei, SUN Fengtao, WU Hua. Mechanical properties and failure criteria of recycled coarse aggregate plastic concrete under triaxial stress[J]. Journal of Building Materials,2020,23(2):454-459(in Chinese).
    [20] CHEN Y L, CHEN Z P, XU J J, et al. Performance evaluation of recycled aggregate concrete under multiaxial compression[J]. Construction and Building Materials,2019,229:116935. doi: 10.1016/j.conbuildmat.2019.116935
    [21] XU J J, CHEN Y L, XIE T Y, et al. Prediction of triaxial behavior of recycled aggregate concrete using multivariable regression and artificial neural network techniques[J]. Construction and Building Materials,2019,226:534-554. doi: 10.1016/j.conbuildmat.2019.07.155
    [22] DENG Z H, WANG Y M, SHENG J, et al. Strength and deformation of recycled aggregate concrete under triaxial compression[J]. Construction and Building Materials,2017,156:1043-1052. doi: 10.1016/j.conbuildmat.2017.08.189
    [23] 周甲佳, 潘金龙, 姚少科, 等. 高强高性能混凝土三轴拉压压力学性能试验研究[J]. 工程力学, 2018, 35(4):144-150.

    ZHOU Jiajia, PAN Jinlong, YAO Shaoke, et al. Experimental study on triaxial compression and tension properties of high strength and high performance concrete[J]. Engineering Mechanics,2018,35(4):144-150(in Chinese).
    [24] 李毅, 程桦, 张亮亮. 不同围压下C60混凝土三轴压缩过程能量分析[J]. 应用力学学报, 2020, 37(5):2086-2093, 2326.

    LI Yi, CHENG Hua, ZHANG Liangliang. Energy analysis of C60 concrete under triaxial compression under different confining pressures[J]. Chinese Journal of Applied Mechanics,2020,37(5):2086-2093, 2326(in Chinese).
    [25] 陈宗平, 陈宇良, 姚侃. 再生混凝土三轴受压力学性能试验及其影响因素[J]. 建筑结构学报, 2014, 35(12):72-81. doi: 10.14006/j.jzjgxb.2014.12.010

    CHEN Zongping, CHEN Yuliang, YAO Kan. Experimental research on mechanical behavior and influence factor of recycled coarse aggregate concretes under triaxial compression[J]. Journal of Building Structures,2014,35(12):72-81(in Chinese). doi: 10.14006/j.jzjgxb.2014.12.010
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  1038
  • HTML全文浏览量:  376
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 修回日期:  2021-10-04
  • 录用日期:  2021-10-18
  • 网络出版日期:  2021-10-29
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回