留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚吡咯均苯三酸铜复合材料的制备、表征与分离产物聚吡咯的CO2吸附性能

田俐 李祯 王会锋 韩长新 刘强 毕晨昊 胡苑桢

田俐, 李祯, 王会锋, 等. 聚吡咯均苯三酸铜复合材料的制备、表征与分离产物聚吡咯的CO2吸附性能[J]. 复合材料学报, 2022, 39(8): 3863-3870. doi: 10.13801/j.cnki.fhclxb.20211028.003
引用本文: 田俐, 李祯, 王会锋, 等. 聚吡咯均苯三酸铜复合材料的制备、表征与分离产物聚吡咯的CO2吸附性能[J]. 复合材料学报, 2022, 39(8): 3863-3870. doi: 10.13801/j.cnki.fhclxb.20211028.003
TIAN Li, LI Zhen, WANG Huifeng, et al. Synthesis and characterization of polypyrrole@copper pyromellitic and CO2 adsorption ability of separated polypyrrole[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3863-3870. doi: 10.13801/j.cnki.fhclxb.20211028.003
Citation: TIAN Li, LI Zhen, WANG Huifeng, et al. Synthesis and characterization of polypyrrole@copper pyromellitic and CO2 adsorption ability of separated polypyrrole[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3863-3870. doi: 10.13801/j.cnki.fhclxb.20211028.003

聚吡咯均苯三酸铜复合材料的制备、表征与分离产物聚吡咯的CO2吸附性能

doi: 10.13801/j.cnki.fhclxb.20211028.003
基金项目: 国家自然科学基金(51202066);教育部新世纪优秀人才支持计划项目(NCET-13-0784)
详细信息
    通讯作者:

    田俐,博士,教授,博士生导师,研究方向为纳米光电材料 E-mail: 849050031@qq.com

  • 中图分类号: O461

Synthesis and characterization of polypyrrole@copper pyromellitic and CO2 adsorption ability of separated polypyrrole

  • 摘要: 聚吡咯的合成方法不同,得到的聚吡咯的分子结构和性能都会有明显的差异。因此,以金属有机框架材料均苯三酸铜(Cu-BTC)为主体材料,采用碘氧化法在其三维孔道内实现了吡咯(Py)的自由基氧化聚合,得到了聚吡咯PPy@Cu-BTC复合材料。采用粉末XRD、SEM、FTIR、TG及N2吸脱附等方法对Cu-BTC、Py@Cu-BTC、PPy@Cu-BTC进行表征,证明孔内聚合的成功进行。Cu-BTC在聚合过程中保持了结构的稳定,其形貌也未发生改变。所制备的PPy@Cu-BTC复合材料基于主客体之间的电荷转移和π-π键的相互作用,其电导率为10−4 S/cm,相对于块体PPy及Cu-BTC模板至少提高四个数量级,是一种半导体材料。N2吸脱附表明,除去模板后分离得到的PPy具有多孔性,对CO2有着较好地吸收能力,其最大吸收值约为16 cm3/g,相对于块状聚吡咯,其吸收能力翻了一倍。

     

  • 图  1  均苯三酸铜(Cu-BTC)的三维孔道结构及尺寸

    Figure  1.  3D internconnected channel structure and pore size of copper pyromellitic (Cu-BTC)

    图  2  所制备的Cu-BTC的孔径分布曲线

    Figure  2.  Pore size distribution curve of as-preapared Cu-BTC

    图  3  活化后Cu-BTC (a)、吡咯(Py)@Cu-BTC (b)、聚吡咯(PPy)@Cu-BTC (c)和分离模板后得到的PPy (d) 的SEM图像

    Figure  3.  SEM images of actived Cu-BTC (a), pyrrole (Py)@Cu-BTC (b), polypyrrole (PPy)@Cu-BTC (c) and the isolated PPy from PPy@Cu-BTC (d)

    图  4  Cu-BTC、Py@Cu-BTC、PPy@Cu-BTC和分离得到的PPy的XRD图谱

    Figure  4.  XRD patterns of actived Cu-BTC, Py@Cu-BTC, PPy@Cu-BTC and isolated PPy from PPy@Cu-BTC

    图  5  Cu-BTC、Py@Cu-BTC、PPy@Cu-BTC和分离得到的PPy的FTIR图谱

    Figure  5.  FTIR spectra of actived Cu-BTC, Py@Cu-BTC, PPy@Cu-BTC and isolated PPy from PPy@Cu-BTC

    图  6  Cu-BTC和PPy@Cu-BTC复合材料在77 K下的N2吸附-脱附曲线

    Figure  6.  N2 sorption isotherms of actived Cu-BTC and PPy@Cu-BTC composites at 77 K

    STP—Standard temperature and pressure

    图  7  PPy的反应示意图

    Figure  7.  Reaction scheme of PPy

    图  8  Py@Cu-BTC和 PPy@Cu-BTC复合材料的热失重曲线

    Figure  8.  TGA curves of Py@Cu-BTC and PPy@Cu-BTC composites

    图  9  Cu-BTC和PPy@Cu-BTC复合材料的电流-电压(I-V)关系

    Figure  9.  Current-voltage (I-V) plots of Cu-BTC and PPy@Cu-BTC composites

    图  10  块状聚吡咯和PPy@Cu-BTC复合材料的I-V 关系

    Figure  10.  I-V plots of bulk PPy and PPy@Cu-BTC composites

    图  11  块状聚吡咯及分离得到的PPy在77 K下的N2吸附曲线曲线

    Figure  11.  N2 sorption isotherms at 77 K of bulk PPy and the isolated PPy from PPy@Cu-BTC composite

    图  12  块状聚吡咯和分离得到的PPy在273 K下的CO2吸收曲线

    Figure  12.  CO2 uptake at 273 K of bulk PPy and the isolated PPy from PPy@Cu-BTC composite

  • [1] DHARA B, NAGARKAR S S, KUMAR J, et al. Increase in electrical conductivity of MOF to billion-fold upon filling the nanochannels with conducting polymer[J]. Journal of Physical Chemistry Letters,2016,7(15):2945-2950. doi: 10.1021/acs.jpclett.6b01236
    [2] PENG Y, KRUNGLEVICIUTE V, ERYAXICI I, et al. Methane storage in metal-organic frameworks: Current records, surprise findings, and challenges[J]. Journal of the American Chemical Society,2013,135(32):11887-11894. doi: 10.1021/ja4045289
    [3] KITAO T, ZHANG Y, KITAGAWA S, et al. Hybridization of MOFs and polymers[J]. Chemical Society Review,2017,46(11):3108-3133. doi: 10.1039/C7CS00041C
    [4] KITAO T, BRACCO S, COMOTTI A, et al. Confinement of single polysilane chains in coordination nanospaces[J]. Journal of the American Chemical Society,2015,137(15):5231-5238. doi: 10.1021/jacs.5b02215
    [5] LU C, BEN T, XU S, et al. Electrochemical synthesis of a microporous conductive polymer based on a metal-organic framework thin film[J]. Angewandte Chemie International Edition,2014,53(25):6454-6458. doi: 10.1002/anie.201402950
    [6] 何亚萍, 韩权, 李伟, 等. 石墨烯-导电聚合物复合材料制备[J]. 化工新型材料, 2016, 44(10):45-48.

    HE Yaping, HAN Quan, LI Wei, et al. Preparation of graphene-conductive polymer composite[J]. New Chemi-cal Materials,2016,44(10):45-48(in Chinese).
    [7] MADHAN K A, RAJENDRAN N. Electrochemical aspects and in vitro biocompatibility of polypyrrole/TiO2 ceramic nanocomposite coatings on 316L SS for orthopedic implants[J]. Ceramics International,2013,39(5):5639-5650. doi: 10.1016/j.ceramint.2012.12.080
    [8] BASAVARAJA C, KIM W J, THINH P X, et al. Electrical conductivity studies on water-soluble polypyrrole-graphene oxide composites[J]. Polymer Composites,2011,32(12):2076-2083. doi: 10.1002/pc.21237
    [9] KAZAZI M, VAEZI M R, KAZAMZEMZADEH A. Enhanced rate performance of polypyrrole-coated sulfur/MWCNT cathode material: A kinetic study by electrochemical impedance spectroscopy[J]. Ionics,2013,20(5):635-643.
    [10] ZHANG X, ZENG X, YANG M, et al. Investigation of a branchlike MoO3/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors[J]. ACS Applied Materrials Interfaces,2014,6(2):1125-1130. doi: 10.1021/am404724u
    [11] 陈启多, 韩凯, 程君, 等. 纳米硅/导电聚合物复合负极的制备与性能[J]. 电池, 2019, 49(1):3-7.

    CHEN Qidong, HAN Kai, CHENG Jun, et al. Synthesis and performance of nano-silicon/conducting polymer compo-site anode[J]. Battery Bimonthly,2019,49(1):3-7(in Chinese).
    [12] LV Q. Unstirred preparation of soluble electroconductive polypyrrole nanoparticles[J]. Microchimica Acta,2010,168(3/4):205-213. doi: 10.1007/s00604-009-0278-4
    [13] 陈小军, 胡翠雯, 崔子怡, 等. 直写3D打印GNPs-MWCNT导电聚合物复合材料的制备及性能[J]. 机械工程材料, 2020, 44(11):83-88. doi: 10.11973/jxgccl202011015

    CHEN Xiaojun, HU Cuiwen, CUI Ziyi, et al. Preparation and performance of GNPs-MWCNT conductive polymer composite materials by direct writing 3D printing[J]. Materials for Mechanical Engineering,2020,44(11):83-88(in Chinese). doi: 10.11973/jxgccl202011015
    [14] 田俐, 刘强, 王会锋, 等. 新型半导体聚乙烯基二氧噻吩@对苯二甲酸铟复合材料的制备、表征与导电性能[J]. 复合材料学报, 2022, 39(6): 2635- 2641.

    TIAN Li, LIU Qiang, WANG Huifeng, et al. Synthesis, cha-racterization and electric conductivity of novel poly (divinyldioxythiophene@indium p-phthalic semi-conduc-tor composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2635-2641(in Chinese).
    [15] NAYAK A, RAMA P S, KUMAR S, et al. Structural tuning of low band gap intermolecular push/pull side-chain polymers for organic photovoltaic applications[J]. Polymer Science,2017,35(9):1073-1085.
    [16] WANG X, YANG C, LIU P. Well-defined polypyrrole nanoflakes via chemical oxidative polymerization in the pre-sence of sodium alkane sulfonate[J]. Materials Letters,2011,65(10):1448-1450. doi: 10.1016/j.matlet.2011.02.031
    [17] FENG X, YAN Z, LI R, et al. The synthesis of shape-controlled polypyrrole/graphene and the study of its capaci-tance properties[J]. Polymer Bulletin,2013,70(8):2291-2304. doi: 10.1007/s00289-013-0952-x
    [18] UEMURA T, NAKANISHI R, MOCHIZUKI S, et al. Radical polymerization of 2, 3-dimethyl-1, 3-butadiene in coordi-nation nanochannels[J]. Chemical Communication,2015,51(48):9892-9895. doi: 10.1039/C5CC01933H
    [19] WANG Q X, ZHANG C Y. Oriented synthesis of one-dimensional polypyrrole molecule chains in a metal-organic framework[J]. Mmacromolecular Rapid Communications,2011,32(20):1610-1614. doi: 10.1002/marc.201100305
    [20] CHITTE H, BHAT N, GORE M, et al. Synthesis of polypyrrole using ammonium peroxy disulfate (APS) as oxidant together with some dopants for use in gas sensors[J]. Materials Sciences and Applications, 2011, 2(10): 1491-1498.
    [21] YANAI N, UEMURA T, OHBA M, et al. Fabrication of two-dimensional polymer arrays: Template synthesis of polypyrrole between redox-active coordination nanoslits[J]. Angewandte Chemie International Edition,2008,47(51):9883-9886. doi: 10.1002/anie.200803846
  • 加载中
图(12)
计量
  • 文章访问数:  1011
  • HTML全文浏览量:  618
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 修回日期:  2021-09-14
  • 录用日期:  2021-10-13
  • 网络出版日期:  2021-10-28
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回