留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短纤维插层碳纤维/环氧树脂复合材料层间性能

郑昊 李岩 涂昊昀

郑昊, 李岩, 涂昊昀. 短纤维插层碳纤维/环氧树脂复合材料层间性能[J]. 复合材料学报, 2022, 39(8): 3674-3683. doi: 10.13801/j.cnki.fhclxb.20211025.003
引用本文: 郑昊, 李岩, 涂昊昀. 短纤维插层碳纤维/环氧树脂复合材料层间性能[J]. 复合材料学报, 2022, 39(8): 3674-3683. doi: 10.13801/j.cnki.fhclxb.20211025.003
ZHENG Hao, LI Yan, TU Haoyun. Research on interlayer properties of short fiber intercalated carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3674-3683. doi: 10.13801/j.cnki.fhclxb.20211025.003
Citation: ZHENG Hao, LI Yan, TU Haoyun. Research on interlayer properties of short fiber intercalated carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3674-3683. doi: 10.13801/j.cnki.fhclxb.20211025.003

短纤维插层碳纤维/环氧树脂复合材料层间性能

doi: 10.13801/j.cnki.fhclxb.20211025.003
基金项目: 国家自然科学基金(51873153);中央高校基本科研业务专项资金
详细信息
    通讯作者:

    李岩,博士,教授,博士生导师,研究方向为纤维增强树脂基复合材料力学高性能化和耐久性 E-mail: liyan@tongji.edu.cn

  • 中图分类号: TB332

Research on interlayer properties of short fiber intercalated carbon fiber/epoxy composites

  • 摘要: 碳纤维/环氧树脂复合材料因具有高的比强度、比模量、抗疲劳性好等优点,已在航空航天、轨道交通、汽车等领域得到越来越广泛的应用。然而作为碳纤维/环氧树脂复合材料的主要结构形式之一的层合板结构,由于厚度方向没有纤维,导致层间性能最弱,极易发生分层破坏,影响结构的承载性能。短纤维层间插层增韧是改善碳纤维/环氧树脂复合材料层间性能的有效手段,近年来,国内外学者开展了大量的相关研究工作,但仍缺乏短纤维层间插层增韧的系统研究。本论文选用碳纤维、亚麻纤维及Kevlar纤维作为插层短纤维,系统地分析和讨论了短纤维种类、插层面密度和纤维长度对碳纤维/环氧树脂复合材料层间增韧效果的影响。结果表明,对于不同的短纤维插层,均存在着随着短纤维长度和插层面密度的增加,复合材料层间断裂韧性先上升后下降的趋势。在此基础上揭示了不同种类纤维的增韧机制,纤维桥联、裂纹扩展路径改变、纤维多层级破坏及纵向撕裂等均有助于复合材料层间断裂韧性的提高,研究结果为短纤维插层增韧复合材料的结构设计奠定了基础。

     

  • 图  1  亚麻纤维多层级结构示意图[23]

    Figure  1.  Schematic diagram of multi-layer structure of flax fiber[23]

    S1, S2, S3—Flax fiber secondary cell wall

    图  2  不同短碳纤维插层面密度碳纤维/环氧树脂复合材料的R曲线 (a) 和层间断裂韧性 (b)

    Figure  2.  R-curves (a) and interlaminar fracture toughness (b) of carbon fiber/epoxy composites with different short carbon fiber intercalation density

    图  3  碳纤维/环氧树脂复合材料双悬臂梁(DCB)试验中层间短纤维桥联现象:(a) 未插层;(b) 2-20组短碳纤维插层

    Figure  3.  Short fiber bridging phenomenon in the middle layer of carbon fiber/epoxy composite double cantilever beam (DCB) test: (a) No intercalation; (b) 2-20 Groups of short carbon fiber intercalation

    图  4  碳纤维/环氧树脂复合材料的I型层间断裂表面结构表征: (a) 未插层;(b) 2-20组短碳纤维插层

    Figure  4.  Characterization of type I interlaminar fracture surface structure of carbon fiber/epoxy composites: (a) No intercalation; (b) 2-20 Groups of short carbon fiber intercalation

    图  5  不同短碳纤维插层长度的碳纤维/环氧树脂复合材料层间断裂韧性

    Figure  5.  Interlaminar fracture toughness of carbon fiber/epoxy composites with different short carbon fiber intercalation length

    图  6  不同短亚麻纤维插层面密度的碳纤维/环氧树脂复合材料层间断裂韧性

    Figure  6.  Interlaminar fracture toughness of carbon fiber/epoxy composites with different short flax fiber intercalation density

    图  7  2-20组短亚麻纤维插层碳纤维/环氧树脂复合材料DCB试验中层间短纤维桥联现象

    Figure  7.  Short fiber bridging phenomenon between layers in the DCB test of 2-20 short flax fibers intercalated carbon fiber/epoxy composites

    图  8  2-20组短亚麻纤维插层碳纤维/环氧树脂复合材料短纤维层级间破坏结构表征:(a) 整体视角;(b) 局部视角

    Figure  8.  Characterization of failure structure of 2-20 groups of short flax fiber intercalated carbon fiber/epoxy composites: (a) Overall perspective; (b) Local perspective

    图  9  不同短亚麻纤维插层长度的碳纤维/环氧树脂复合材料层间断裂韧性

    Figure  9.  Interlaminar fracture toughness of carbon fiber/epoxy composites with different short flax fiber intercalation length

    图  10  不同短Kevlar纤维插层面密度的碳纤维/环氧树脂复合材料层间断裂韧性

    Figure  10.  Interlaminar fracture toughness of carbon fiber/epoxy composites with different short Kevlar fiber intercalation density

    图  11  2-15组短Kevlar纤维插层碳纤维/环氧树脂复合材料DCB试验中层间短纤维桥联现象

    Figure  11.  Short fiber bridging phenomenon between layers in the DCB test of 2-15 groups of short Kevlar fibers intercalated carbon fiber/epoxy composites

    图  12  碳纤维/环氧树脂复合材料层间短纤维破坏面结构表征: (a) 2-20组短碳纤维插层;(b) 2-15组短Kevlar纤维插层

    Figure  12.  Structural characterization of short fiber failure surface between layers of carbon fiber/epoxy composites: (a) 2-20 Groups of short carbon fiber intercalation; (b) 2-15 Groups of short Kevlar fiber intercalation

    图  13  不同短Kevlar纤维插层长度的碳纤维/环氧树脂复合材料层间断裂韧性

    Figure  13.  Interlaminar fracture toughness of carbon fiber/epoxy composites with different short Kevlar fiber intercalation length

    图  14  短纤维插层面密度 (a) 和插层长度 (b) 对不同种类短纤维插层碳纤维/环氧树脂复合材料层间断裂韧性的影响

    Figure  14.  Effect of short fiber intercalation density (a) and intercalation length (b) on interlaminar fracture toughness of different kinds of short fiber intercalated carbon fiber/epoxy composites

    图  15  短纤维层间增韧机制示意图:(a) 短碳纤维插层;(b) 短亚麻纤维插层;(c) 短 Kevlar 纤维插层

    Figure  15.  Schematic diagram of short fiber interlaminar toughening mechanism: (a) Short carbon fiber intercalation; (b) Short flax fiber intercalation; (c) Short Kevlar fiber intercalation

    表  1  短纤维插层与短纤维参数对应表

    Table  1.   Corresponding table of short fiber intercalation and short fiber parameters

    Short fiber intercalationShort fiber length/mmShort fiber intercalation density/(g·m−2)
    0-0
    2-10210
    2-15215
    2-20220
    2-25225
    6-15615
    6-20620
    10-151015
    10-201020
    Notes: x-y—Laminates with short fibers at the length of x mm and the areal density of y g/m2; 0-0—There was no interlayer short fibers involved in the composites, which was the control group.
    下载: 导出CSV

    表  2  短纤维插层碳纤维/环氧树脂复合材料的拉伸和弯曲试验结果

    Table  2.   Tensile and flexural test results of short fiber intercalated carbon fiber/epoxy composites

    Short fiber intercalationTensile strength/MPaTensile modulus/GPaFlexural strength/MPaFlexural modulus/GPa
    0-01704.4±102.3103.6±7.2670.8±21.7143.9±4.4
    Carbon fiber 6-201772.1±114.1106.7±6.4663.8±19.7146.1±4.5
    Flax fiber 6-201738.2±96.9107.4±7.9666.3±23.3142.6±4.3
    Kevlar fiber 6-151792.5±123.6105.8±6.3686.1±20.6154.4±5.2
    下载: 导出CSV
  • [1] CHOI N S, KINLOCH A J, WILLIAMS J G. Delamination fracture of multidirectional carbon-fiber/epoxy composites under mode I, mode II and mixed-mode I/II loading[J]. Journal of Composite Materials,1999,33(1):73-100.
    [2] 矫桂琼, 宁荣昌, 卢智先, 等. 层间增韧复合材料研究[J]. 宇航材料工艺, 2001,31(4):36-39. doi: 10.3969/j.issn.1007-2330.2001.04.008

    JIAO Guiqiong, NING Rongchang, LU Zhixian, et al. Study on interlaminar toughened composites[J]. Aerospace Materials & Technology,2001,31(4):36-39(in Chinese). doi: 10.3969/j.issn.1007-2330.2001.04.008
    [3] 张静静, 谷锦, 陈勇, 等. 环氧树脂增韧改性研究进展[J]. 材料开发与应用, 2012, 27(6):111-116.

    ZHANG Jingjing, GU Jin, CHEN Yong, et al. Research progress on toughening and modification of epoxy resin[J]. Development and Application of Materials,2012,27(6):111-116(in Chinese).
    [4] DADFAR M R, GHADAMI F. Effect of rubber modification on fracture toughness properties of glass reinforced hot cured epoxy composites[J]. Materials and Design,2013,47:16-20. doi: 10.1016/j.matdes.2012.12.035
    [5] GARG A C, MAI Y W. Failure mechanisms in toughened epoxy resins-A review[J]. Composites Science and Tech-nology,1988,31(3):179-223. doi: 10.1016/0266-3538(88)90009-7
    [6] ZHOU Y, PERVIN F, LEWIS L, et al. Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes[J]. Materials Science and Engineering A,2008,475(1/2):157-165. doi: 10.1016/j.msea.2007.04.043
    [7] HUBERT P, ASHRAFI B, ADHIKARI K, et al. Synthesis and characterization of carbon nanotubere inforced epoxy: Correlation between viscosity and elastic modulus[J]. Composites Science and Technology,2009,69(14):2274-2280. doi: 10.1016/j.compscitech.2009.04.023
    [8] SHAY H, HERMAN L, ANTHONY G, et al. Mode I and mode II fracture energy of MWCNT reinforced nanofibrilmats interleaved carbon/epoxy laminates[J]. Composites Science and Technology,2014,90:48-56. doi: 10.1016/j.compscitech.2013.10.013
    [9] 徐亚娟, 刘少兵. 热塑性树脂增韧环氧树脂研究进展[J]. 热固性树脂, 2010, 25(6):43-47.

    XU Yajuan, LIU Shaobin. Research progress of epoxy resin toughened by thermoplastic resin[J]. Thermosetting Resin,2010,25(6):43-47(in Chinese).
    [10] LEE L, RUDOV-CLARK S, MOURITZ A P, et al. Effect of weaving damage on the tensile properties of three-dimensional woven composites[J]. Composite Structures,2002,57(1/4):405-413. doi: 10.1016/S0263-8223(02)00108-3
    [11] DRANSFIELD K A, JAIN L K, MAI Y W. On the effects of stitching in CFRPs—I:Mode I delamination toughness[J]. Composites Science and Technology,1998,58(6):815-827. doi: 10.1016/S0266-3538(97)00229-7
    [12] 陈静, 王海雷. 复合材料缝合技术的研究及应用进展[J]. 新材料产业, 2018, 95(6):38-41.

    CHEN Jing, WANG Hailei. Research and application progress of composite suture technology[J]. Advanced Mater-ials Industry,2018,95(6):38-41(in Chinese).
    [13] MOURITZ A. Review of Z-pinned composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2007,38:2383-2397. doi: 10.1016/j.compositesa.2007.08.016
    [14] GARCIA E J, WARDLE B L, HART A J. Joining prepreg composite interfaces with aligned carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing,2008,39(6):1065-1070. doi: 10.1016/j.compositesa.2008.03.011
    [15] KHAN S U, KIM J K. Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers[J]. Carbon,2012,50(14):5265-5277. doi: 10.1016/j.carbon.2012.07.011
    [16] LI B, LIU D, LI G, et al. Multifold interface and multilevel crack propagation mechanisms of graphene oxide/polyurethane/epoxy membranes interlaminar-toughened carbon fiber-reinforced polymer composites[J]. Journal of Materials Science,2018,53(23):15939-15951. doi: 10.1007/s10853-018-2753-y
    [17] 姚佳伟, 刘梦瑶, 牛一凡. PEK-C膜层间增韧碳纤维/环氧树脂复合材料的力学性能[J]. 复合材料学报, 2019, 36(5):1083-1091.

    YAO Jiawei, LIU Mengyao, NIU Yifan. Mechanical properties of PEK-C interlayer toughened carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2019,36(5):1083-1091(in Chinese).
    [18] SOHN M S, HU X. Processing of carbon-fibre/epoxy composites with cost-effective interlaminar reinforcement[J]. Composites Science and Technology,1998,58:211-220. doi: 10.1016/S0266-3538(97)00114-0
    [19] PARK B Y, KIM S C. A study of the interlaminar fracture toughness of a carbon-fiber/epoxy composite containing surface-modified short Kevlar fibers[J]. Composites Science and Technology,1998,58(10):1599-1606. doi: 10.1016/S0266-3538(97)00224-8
    [20] WALKER L, HU X. Comparison of carbon fibre/epoxy composites reinforced by short aramid and carbon fibres[J]. Scripta Materialia,1999,41(6):575-582. doi: 10.1016/S1359-6462(99)00193-1
    [21] 刘浩洋, 吕超雨, 石姗姗, 等. 芳纶纤维增韧碳纤维增强环氧树脂复合材料-铝蜂窝夹芯结构界面性能和增韧机制[J]. 复合材料学报, 2022, 39(2): 559-567.

    LIU Haoyang, LV Chaoyu, SHI Shanshan, et al. Interfacial properties and toughening mechanism of aramid fiber toughened carbon fiber reinforced epoxy resin composite aluminum honeycomb sandwich structure[J]. Acta Mater-iae Compositae Sinica, 2022, 39(2): 559-567(in Chinese).
    [22] YASAEE M, BOND I P, TRASK R S, et al. Mode I interfacial toughening through discontinuous interleaves for damage suppression and control[J]. Composites Part A: Applied Science and Manufacturing,2012,43:198-207. doi: 10.1016/j.compositesa.2011.10.009
    [23] DOMENGES B, CHARLET K. Direct insights on flax fiber structure by focused ion beam microscopy[J]. Microscopy and Microanalysis,2010,16(2):175-182. doi: 10.1017/S1431927609991292
    [24] American Society for Testing Materials International. Test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528[S]. West Conshohocken: American Society for Testing Materials International, 2013.
    [25] American Society for Testing Materials International. Test method for tensile properties of polymer matrix composite materials: ASTM D3039/D3039M[S]. West Conshohocken: American Society for Testing Materials International, 2017.
    [26] American Society for Testing Materials International. Test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790[S]. West Conshohocken: American Society for Testing Materials International, 2017.
    [27] LI Y, WANG D, MA H. Improving interlaminar fracture toughness of flax fiber/epoxy composites with chopped flax yarn interleaving[J]. Science China Technological Sciences,2015,58(10):1745-1752. doi: 10.1007/s11431-015-5911-3
    [28] 莫正才, 胡程耀, 霍冀川, 等. 苎麻短纤维层间增韧碳纤维/环氧树脂复合材料[J]. 复合材料学报, 2017, 34(6):1237-1244.

    MO Zhengcai, HU Chengyao, HUO Jichuan, et al. Interlayer-toughening carbon fiber/epoxy composites with short ramie fiber[J]. Acta Materiae Compositae Sinica,2017,34(6):1237-1244(in Chinese).
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  1287
  • HTML全文浏览量:  788
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-20
  • 修回日期:  2021-09-26
  • 录用日期:  2021-10-19
  • 网络出版日期:  2021-10-26
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回