留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超浸润性γ-氨丙基三乙氧基硅烷-TiO2包覆织物的制备及其水净化性能

陈迪 黄杉 杨园园 张玉红

陈迪, 黄杉, 杨园园, 等. 超浸润性γ-氨丙基三乙氧基硅烷-TiO2包覆织物的制备及其水净化性能[J]. 复合材料学报, 2022, 39(10): 4620-4630. doi: 10.13801/j.cnki.fhclxb.20211025.001
引用本文: 陈迪, 黄杉, 杨园园, 等. 超浸润性γ-氨丙基三乙氧基硅烷-TiO2包覆织物的制备及其水净化性能[J]. 复合材料学报, 2022, 39(10): 4620-4630. doi: 10.13801/j.cnki.fhclxb.20211025.001
CHEN Di, HUANG Shan, YANG Yuanyuan, et al. Preparation of superwetting γ-aminopropyltriethoxysilane-TiO2 coated fabric and its water purification performances[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4620-4630. doi: 10.13801/j.cnki.fhclxb.20211025.001
Citation: CHEN Di, HUANG Shan, YANG Yuanyuan, et al. Preparation of superwetting γ-aminopropyltriethoxysilane-TiO2 coated fabric and its water purification performances[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4620-4630. doi: 10.13801/j.cnki.fhclxb.20211025.001

超浸润性γ-氨丙基三乙氧基硅烷-TiO2包覆织物的制备及其水净化性能

doi: 10.13801/j.cnki.fhclxb.20211025.001
基金项目: 湖北省高等学校优秀中青年创新团队项目:功能涂料研发(T201801)
详细信息
    通讯作者:

    张玉红,博士,教授,硕士生导师,研究方向为胶体复合微球的组装  E-mail: zhangyuhong@hubu.edu.cn

  • 中图分类号: TB332

Preparation of superwetting γ-aminopropyltriethoxysilane-TiO2 coated fabric and its water purification performances

  • 摘要: 异向浸润性材料因其对油和水具有明显相反吸收特性成为油水分离研究的热点。本文通过将γ-氨丙基三乙氧基硅烷(APTES)与亲水纳米TiO2混合并作用于织物上,经过水解、交联制备了APTES-TiO2包覆的超亲水水下超疏油织物(APTES-TiO2@fabric)。采用接触角测量仪、FTIR、XPS、FESEM、XRD和EDS对改性织物进行表征。结果表明,APTES-TiO2成功包覆于织物表面,该织物在空气中具有0°的水接触角及在水中对所选用的油具有大于152°的油接触角。在油水分离测试中,对几种轻油的分离效率均在99%以上,且经过5次分离循环和酸碱盐溶液浸泡后依旧具有较好的分离效率。另外,织物还具有优异的光催化性能,在12 h的紫外照射下,能降解水中和吸附于自身的亚甲基蓝,达到净化水和自清洁的效果。结果表明,APTES-TiO2@fabric有良好的油水分离和光催化性能,对实际应用中水净化有借鉴意义。

     

  • 图  1  原始织物、γ-氨丙基三乙氧基硅烷(APTES)@fabric和APTES-TiO2@fabric织物红外图谱对比 (a) 和XPS全扫描图谱 (b)

    Figure  1.  Infrared contrast spectrum (a) and XPS full scan spectrum (b) of pristine fabric, γ-aminopropyltriethoxysilane (APTES)@fabric and APTES-TiO2@fabric

    图  2  原始织物、APTES@fabric和APTES-TiO2@fabric的XRD图谱对比

    Figure  2.  Comparison of XRD patterns of pristine fabric, APTES@fabric and APTES-TiO2@fabric

    图  3  (a) 原始织物放大2000和8000倍SEM图像;(b) APTES@fabric放大2 000和8000倍SEM图像;(c) APTES-TiO2@fabric放大8000和20000倍SEM图像;(d) EDS元素映射图像

    Figure  3.  (a) SEM images of pristine fabric at 2 000 and 8000 times magnification; (b) SEM images of APTES@fabric at 2000 and 8000 times magnification; (c) SEM images of APTES-TiO2@fabric at 8000 and 20000 times magnification; (d) EDS element mapping images

    图  4  原始织物、APTES@fabric和APTES-TiO2@fabric水接触角及水滴完全渗透所需时间

    Figure  4.  Water contact angle and time required for complete penetration of water droplets of pristine fabric, APTES@fabric and APTES-TiO2@fabric

    图  5  APTES@fabric和APTES-TiO2@fabric水下油接触角

    Figure  5.  Underwater oil contact angle of APTES@fabric and APTES-TiO2@fabric

    图  6  (a) 原始织物、APTES@fabric和APTES-TiO2@fabric水下油黏附测试;(b) 二氯甲烷液滴在原始织物和APTES-TiO2@fabric上的照片

    Figure  6.  (a) Underwater oil adhesion test of pristine fabric, APTES@fabric and APTES-TiO2@fabric; (b) Photograph of methylene chloride drop on pristine fabric and APTES-TiO2@fabric

    图  7  APTES-TiO2@fabric油水分离过程:(a)油水分离装置;(b)先倒入混合物中的油;(c)倒入混合物中的水;(d)分离后的油和水

    Figure  7.  APTES-TiO2@fabric oil water separation process: (a) Oil water separation device; (b) Pour oil of the mixture first; (c) Pour water of the mixture; (d) Separated oil and water

    图  8  (a) APTES-TiO2@fabric对不同油水混合物的分离效率;(b) APTES-TiO2@fabric不同循环次数下分离效率及通量

    Figure  8.  (a) APTES-TiO2@fabric separation efficiency of different oil-water mixtures; (b) APTES-TiO2@fabric separation efficiency and flux under different cycle times

    图  9  不同酸碱盐溶液浸泡后APTES-TiO2@fabric的水下油接触角 (a) 和油水分离效率 (b)

    Figure  9.  Underwater oil contact angle (a) and oil-water separation efficiency (b) of APTES-TiO2@fabric after soaking in different acid-base-salt solutions

    图  10  亚甲基蓝水溶液在紫外光下照射不同时间的颜色变化照片、紫外光谱(a)和降解循环(b)

    Figure  10.  Photograph of color change, UV spectrum (a) and degradation cycle (b) of methylene blue aqueous solution under ultraviolet light for different time

    图  11  被亚甲基蓝污染的APTES-TiO2@fabric在紫外光下照射12 h前后对比照片

    Figure  11.  Comparison photos of APTES-TiO2@fabric contaminated with methylene blue before and after exposure to ultraviolet light for 12 h

    表  1  原始织物改性前后C、N、O、Si和Ti元素含量变化

    Table  1.   Changes of C, N, O, Si and Ti element content before and after pristine fabric modification Unit: at%

    ElementPristine fabricAPTES
    @fabric
    APTES-TiO2
    @fabric
    C38.1433.2624.85
    N0.009.985.87
    O59.1651.2848.50
    Si2.715.484.82
    Ti0.000.0015.97
    下载: 导出CSV
  • [1] QIN G J, ZHANG P, HOU X Q, et al. Risk assessment for oil leakage under the common threat of multiple natural hazards[J]. Environmental Science and Pollution Research,2020,27(14):16507-16520. doi: 10.1007/s11356-020-08184-7
    [2] 魏倩, 林韶晖, 冯献社, 等. 超疏水石墨烯/甲醛-三聚氰胺-亚硫酸氢钠共聚物海绵的制备及其在油水分离中的应用[J]. 复合材料学报, 2019, 36(7):1728-1736. doi: 10.13801/j.cnki.fhclxb.20190109.002

    WEI Qian, LIN Shaohui, FENG Xianshe, et al. Synthesis of superhydrophobic graphene/formaldehyde-melamine-sodium bisulfite copolymer sponge and its application as absorbent for oil water separation[J]. Acta Materiae Compositae Sinica,2019,36(7):1728-1736(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190109.002
    [3] LIU X, MENG R L, XING Q G, et al. Assessing oil spill risk in the Chinese Bohai sea: A case study for both ship and platform related oil spills[J]. Ocean & Coastal Management,2015,108:140-146. doi: 10.1016/j.ocecoaman.2014.08.016
    [4] DE OLIVEIRA SOARES M, TEIXEIRA C E P, BEZERRA L E A, et al. Oil spill in South Atlantic (Brazil): Environmental and governmental disaster[J]. Marine Policy,2020,115:103879. doi: 10.1016/j.marpol.2020.103879
    [5] NOROUZI N, FANI M, ZIARANI Z K. The fall of oil age: A scenario planning approach over the last peak oil of human history by 2040[J]. Journal of Petroleum Science and Engineering,2020,188:106827. doi: 10.1016/j.petrol.2019.106827
    [6] LI J J, ZHOU Y N, LUO Z H. Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review[J]. Progress in Polymer Science,2018,87:1-33. doi: 10.1016/j.progpolymsci.2018.06.009
    [7] XUE Z X, CAO Y Z, LIU N, et al. Special wettable materials for oil/water separation[J]. Journal of Materials Che-mistry A,2014,2(8):2445-2460. doi: 10.1039/C3TA13397D
    [8] FENG L, ZHANG Z Y, MAI Z H, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie,2004,116(15):2046-2048. doi: 10.1002/ange.200353381
    [9] WEI Y, QI H, GONG X, et al. Specially wettable membranes for oil-water separation[J]. Advanced Materials Interfaces,2018,5(23):1800576. doi: 10.1002/admi.201800576
    [10] QIU L, SUN Y H, GUO Z G. Designing novel superwetting surfaces for high-efficiency oil-water separation: Design principles, opportunities, trends and challenges[J]. Jour-nal of Materials Chemistry A,2020,8(33):16831-16853. doi: 10.1039/D0TA02997A
    [11] ZENG Q T, MA P M, LAI D H, et al. Superhydrophobic reduced graphene oxide@poly(lactic acid) foam with electrothermal effect for fast separation of viscous crude oil[J]. Journal of Materials Science,2021,56(19):11266-11277. doi: 10.1007/s10853-021-06029-3
    [12] SI Y F, DONG Z C, JIANG L. Bioinspired designs of superhydrophobic and superhydrophilic materials[J]. ACS Central Science,2018,4(9):1102-1112. doi: 10.1021/acscentsci.8b00504
    [13] SU M J, LIU Y, LI S H, et al. A rubber-like, underwater superoleophobic hydrogel for efficient oil/water separation[J]. Chemical Engineering Journal,2019,361:364-372. doi: 10.1016/j.cej.2018.12.082
    [14] LI J, YAN L, LI W J, et al. Superhydrophilic-underwater superoleophobic ZnO-based coated mesh for highly efficient oil and water separation[J]. Materials Letters,2015,153:62-65. doi: 10.1016/j.matlet.2015.03.146
    [15] LIU Y, YIN J Y, FU Y B, et al. Underwater superoleophobic APTES-SiO2/PVA organohydrogel for low-temperature tolerant, self-healing, recoverable oil/water separation mesh[J]. Chemical Engineering Journal,2020,382:122925. doi: 10.1016/j.cej.2019.122925
    [16] GE B, HAN L, LIANG X, et al. Fabrication of superhydrophobic Cu-BiOBr surface for oil/water separation and water soluble pollutants degradation[J]. Applied Surface Science,2018,462:583-589. doi: 10.1016/j.apsusc.2018.08.174
    [17] BAIG U, FAIZAN M, SAJID M. Multifunctional membranes with super-wetting characteristics for oil-water separation and removal of hazardous environmental pollutants from water: A review[J]. Advances in Colloid and Interface Science,2020,285:102276. doi: 10.1016/j.cis.2020.102276
    [18] BAIG U, MATIN A, GONDAL M, et al. Facile fabrication of superhydrophobic, superoleophilic photocatalytic membrane for efficient oil-water separation and removal of hazardous organic pollutants[J]. Journal of Cleaner Production,2019,208:904-915. doi: 10.1016/j.jclepro.2018.10.079
    [19] WANG Z X, HAN M C, ZHANG J, et al. Investigating and significantly improving the stability of tannic acid (TA)-aminopropyltriethoxysilane (APTES) coating for enhanced oil-water separation[J]. Journal of Membrane Science,2020,593:117383. doi: 10.1016/j.memsci.2019.117383
    [20] BET-MOUSHOUL E, MANSOURPANAH Y, FARHADI K, et al. TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes[J]. Chemical Engineering Journal,2016,283:29-46. doi: 10.1016/j.cej.2015.06.124
    [21] LI M, BIAN C, YANG G X, et al. Facile fabrication of water-based and non-fluorinated superhydrophobic sponge for efficient separation of immiscible oil/water mixture and water-in-oil emulsion[J]. Chemical Engineering Journal,2019,368:350-358. doi: 10.1016/j.cej.2019.02.176
    [22] YANG J, KWON G J, HWANG K, et al. Cellulose-chitosan antibacterial composite films prepared from LiBr solution[J]. Polymers,2018,10(10):1058. doi: 10.3390/polym10101058
    [23] EL-SAYED N S, EL-SAKHAWY M, BRUN N, et al. New approach for immobilization of 3-aminopropyltrimethoxysilane and TiO2 nanoparticles into cellulose for BJ1 skin cells proliferation[J]. Carbohydrate polymers,2018,199:193-204. doi: 10.1016/j.carbpol.2018.07.004
    [24] LI Z Q, DONG Y C, LI B, et al. Creation of self-cleaning polyester fabric with TiO2 nanoparticles via a simple exhaustion process: Conditions optimization and stain decomposition pathway[J]. Materials & Design,2018,140:366-375. doi: 10.1016/j.matdes.2017.12.014
    [25] 林细标. 工业废水废气治理技术[J]. 环境与发展, 2019, 31(4):44, 46.

    LIN Xibiao. Treatment technology in industrial wastewater waste gas[J]. Environment and Development,2019,31(4):44, 46(in Chinese).
    [26] KONG A Q, JI Y H, MA H H, et al. A novel route for the removal of Cu(II) and Ni(II) ions via homogeneous adsorption by chitosan solution[J]. Journal of Cleaner Production,2018,192:801-808. doi: 10.1016/j.jclepro.2018.04.271
    [27] JIANG X L, PENG Z T, GAO Y R, et al. Preparation and visible-light photocatalytic activity of Ag-loaded TiO2@Y2O3 hollow microspheres with double-shell structure[J]. Powder Technology,2021,377:621-631. doi: 10.1016/j.powtec.2020.09.030
    [28] XIE Z W, LIN J C, XU M Y, et al. Novel Fe3O4 nanoparticle/β-cyclodextrin-based polymer composites for the removal of methylene blue from water[J]. Industrial & Engineering Chemistry Research,2020,59(26):12270-12281. doi: 10.1021/acs.iecr.0c01115
    [29] LI F R, KONG W T, BHUSHAN B, et al. Ultraviolet-driven switchable superliquiphobic/superliquiphilic coating for separation of oil-water mixtures and emulsions and water purification[J]. Journal of Colloid and Interface Science,2019,557:395-407. doi: 10.1016/j.jcis.2019.09.042
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  789
  • HTML全文浏览量:  440
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-13
  • 修回日期:  2021-10-04
  • 录用日期:  2021-10-16
  • 网络出版日期:  2021-10-25
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回