留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同骨料体积分数下混凝土增韧机制及细观断裂模拟

陈燕伟 冯吉利 朱天宇 李凤晨

陈燕伟, 冯吉利, 朱天宇, 等. 不同骨料体积分数下混凝土增韧机制及细观断裂模拟[J]. 复合材料学报, 2022, 39(10): 4972-4987. doi: 10.13801/j.cnki.fhclxb.20211022.003
引用本文: 陈燕伟, 冯吉利, 朱天宇, 等. 不同骨料体积分数下混凝土增韧机制及细观断裂模拟[J]. 复合材料学报, 2022, 39(10): 4972-4987. doi: 10.13801/j.cnki.fhclxb.20211022.003
CHEN Yanwei, FENG Jili, ZHU Tianyu, et al. Toughening mechanism and meso-scale fracture simulation of concrete with different aggregate volume fractions[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4972-4987. doi: 10.13801/j.cnki.fhclxb.20211022.003
Citation: CHEN Yanwei, FENG Jili, ZHU Tianyu, et al. Toughening mechanism and meso-scale fracture simulation of concrete with different aggregate volume fractions[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4972-4987. doi: 10.13801/j.cnki.fhclxb.20211022.003

不同骨料体积分数下混凝土增韧机制及细观断裂模拟

doi: 10.13801/j.cnki.fhclxb.20211022.003
基金项目: 国家重点研发计划(2016YFC0600901);国家自然科学基金(41172116;U1261212)
详细信息
    通讯作者:

    冯吉利,博士,教授,博士生导师,研究方向为工程力学与地下工程 E-mail: fjl@cumtb.edu.cn

  • 中图分类号: TU528.01

Toughening mechanism and meso-scale fracture simulation of concrete with different aggregate volume fractions

  • 摘要: 研究了不同骨料体积分数下的混凝土增韧机制,建立了II型断裂韧度KIIC的细观力学模型。对含有4种骨料体积分数(19vol%、25vol%、31vol%、37vol%)的混凝土试件,分别进行了楔入劈拉试验和无切口试件的II型断裂试验,并利用内聚力模型及点阵法对相关II型断裂试验开展了细观模拟。结果表明:随着骨料体积分数的增加,混凝土I型断裂韧度KIC和II型断裂韧度KIIC均明显提高,KIIC/KIC逐渐增大且与骨料体积分数之间存在对数函数关系;骨料的圈闭-桥联对混凝土增韧起着主导作用,其增韧效应远大于裂纹路径偏转或裂尖屏蔽引起的;给出了II型断裂韧度KIIC和骨料体积分数Va之间的细观力学关系,其预测值和试验值的符合性较好;混凝土II型断裂细观模拟的力学响应、断裂形态和试验结果表现出良好的一致性;内聚力单元的标量刚度退化(Scalar stiffness degradation,SDEG)值的变化,可用来表征混凝土在细观水平上的损伤演化,且对宏观断裂响应的预测有着重要作用。

     

  • 图  1  骨料筛分曲线

    Figure  1.  Particle size distribution of aggregates

    图  2  楔入劈拉试验(WST)试件、无切口试件的几何形状

    Figure  2.  Geometries of wedge splitting tests (WST) specimen and non-notched specimen

    D1—Depth of WST specimen; D—Effective depth of WST specimen; B—Thickness of WST specimen; a0—Length of precast crack; σ—External loads on non-notched specimen; a—Half length of ligament on non-notched specimen; h—Half depth of non-notched specimen; w—Half thickness of non-notched specimen

    图  3  WST试件、无切口试件的加载布置

    Figure  3.  Testing arrangements of WST specimen and non-notched specimen

    P—Load; θ—Wedge angle

    图  4  典型无切口混凝土试件的荷载-位移曲线

    Figure  4.  Typical load-displacement curve of non-notched concrete specimens

    图  5  混凝土KICKIIC随骨料体积分数变化的关系

    Figure  5.  KIC and KIIC of concrete with different aggregate volume fractions

    图  6  混凝土试件的典型断裂模式

    Figure  6.  Typical fracture patterns of concrete specimens

    图  7  混凝土断裂过程中的增韧机制

    Figure  7.  Typical toughening mechanisms in fracture process of concrete

    图  8  混凝土裂纹偏转增韧效应与骨料体积分数之间的关系[14]

    Figure  8.  Relation between the toughening due to crack deflection of concrete and the aggregate volume fraction[14]

    图  9  混凝土裂尖屏蔽增韧效应与骨料体积分数之间的关系[14]

    Figure  9.  Relation between the toughening due to crack shielding of concrete and the aggregate volume fraction[14]

    图  10  混凝土圈闭-桥联增韧效应与骨料体积分数之间的关系

    Figure  10.  Relation between the toughening due to trapping-bridging of concrete and the aggregate volume fraction

    图  11  KIC的细观力学模型的预测结果

    Figure  11.  Predicted KIC by the meso-mechanical model

    图  12  混凝土KIIC/KIC随骨料体积分数的变化

    Figure  12.  Change of KIIC/KIC of concrete with different aggregate volume fractions

    图  13  混凝土KIIC的细观力学模型的预测结果

    Figure  13.  Predicted KIIC of concrete by the meso-mechanical model

    图  14  模拟中混凝土的细观结构

    Figure  14.  Meso-structure of concrete in simulation

    图  15  混凝土裂纹起始位置附近的典型内聚力单元的标量刚度退化(SDEG)值和最大主应力随应变的变化

    Figure  15.  Change of scalar stiffness degradation (SDEG) and stress with strain for a typical element near the crack initiation of concrete

    图  16  混凝土荷载和裂纹起始位置附近的典型内聚力单元的SDEG值随位移的变化

    Figure  16.  Change of load and SDEG for a typical element near the crack initiation with displacement of concrete

    图  17  试验和模拟的混凝土试件荷载-位移曲线

    Figure  17.  Load-displacement curves of the concrete specimens from experimental and numerical results

    a1-a3, b1-b3, c1-c3, d1-d3—The characteristic loads corresponding to the crack initiation, crack propagation and crack basically penetrating ligament on the specimen with aggregate volume fraction of 19vol%, 25vol%, 31vol%, 37vol%, respectively

    图  18  不同骨料体积分数下混凝土断裂过程及相关试件的断裂模式

    Figure  18.  Fracture processes of the concrete modeling with different aggregate volume fractions and the corresponding failure pattern of the concrete specimen

    表  1  混凝土配合比

    Table  1.   Compositions of concretes kg/m3

    Va/vol%CementSandCoarse aggregateLimestone powderWaterSuperplasticizer
    19490116750096179.35
    25490100066796179.35.5
    3149083483396179.36.1
    37490667100096179.37.4
    Note:Va—Aggregate volume fraction.
    下载: 导出CSV

    表  2  试验测得的混凝土断裂参数

    Table  2.   Fracture parameters of concrete by the experimental tests

    Va/vol%fc/MPaft/MPaE/GPaPv,max/kNPIIC/kNKIC/(MPa·m1/2)KIIC/(MPa·m1/2)KIIC/KIC
    1944.793.8033.238.53279.351.032.212.15
    2551.963.5932.39.49368.211.092.912.67
    3150.084.4134.0111.35401.221.173.172.72
    3758.364.8535.2613.05431.561.203.412.84
    Notes: fc—Compressive strength; ft—Tensile strength; E—Modulus of elasticity; Pv,max—Peak vertical load of WST specimens; PIIC—Critical fracture load of non-notched specimens; KIC—Mode I fracture toughness; KIIC—Mode II fracture toughness.
    下载: 导出CSV

    表  3  混凝土I型断裂韧度KIC的细观力学模型预测值

    Table  3.   Predicted value of mode I fracture toughness of concrete KIC by the meso-mechanical model

    Va/vol%Km IC/(MPa·m1/2)Kdef IC/Km ICKdic IC/Km ICKbri IC/Km ICKIC/(MPa·m1/2)
    ModelExperiment
    190.5591.0801.0621.5530.9961.03
    250.5591.1031.0831.6231.0861.09
    310.5591.1271.1071.6841.1761.17
    370.5591.1501.1321.7391.2671.20
    Notes: Km IC—Mode I fracture toughness of matrix; Kdef IC—Effective toughness due to crack deflection; Kdic IC—Effective toughness due to crack shielding; Kbri IC—Effective toughness due to trapping-bridging.
    下载: 导出CSV

    表  4  混凝土模拟所需的计算参数

    Table  4.   Parameters used in the simulations of concrete

    Solid elements
    ConstantCoarse aggregateMortar
    E/GPa7027.5
    ν0.20.2
    Cohesive elementsITZInterface elements
    within mortar
    En/(N·mm−3)40005000
    Es/(N·mm−3)48006000
    Tnmax/MPa12
    Tsmax/MPa24
    GIC/(N·mm−1)0.050.1
    GIIC/(N·mm−1)0.51
    Notes: ν—Poisson's ratio; En and Es—Normal and tangential stiffness, respectively; Tnmax and Tsmax—Normal and shear strength, respectively; GIC and GIIC—Fracture energies from mode I to mode II, respectively.
    下载: 导出CSV
  • [1] AMPARANO F E, XI Y, ROH Y S. Experimental study on the effect of aggregate content on fracture behavior of concrete[J]. Engineering Fracture Mechanics,2000,67(1):65-84. doi: 10.1016/S0013-7944(00)00036-9
    [2] AKCAY B, AGAR-OZBEK A S, BAYRAMOV F, et al. Interpretation of aggregate volume fraction effects on fracture behavior of concrete[J]. Construction and Building Materials,2012,28(1):437-443. doi: 10.1016/j.conbuildmat.2011.08.080
    [3] TASDEMIR M A, KARIHALOO B L. Effect of aggregate volume fraction on the fracture parameters of concrete: A meso-mechanical approach[J]. Magazine of Concrete Research,2001,53(6):405-415. doi: 10.1680/macr.2001.53.6.405
    [4] BEYGI M H A, KAZEMI M T, NIKBIN I M, et al. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete[J]. Cement and Concrete Research,2014,66:75-90. doi: 10.1016/j.cemconres.2014.06.008
    [5] 韩宇栋, 张君, 高原. 粗骨料体积含量对混凝土断裂参数的影响[J]. 工程力学, 2013(3):191-197, 205.

    HAN Yudong, ZHANG Jun, GAO Yuan. Effect of coarse aggregate content on fracture parameters of concrete[J]. Engineering Mechanics,2013(3):191-197, 205(in Chinese).
    [6] PROKOPSKI G. Effect of coarse aggregate quantity on fracture toughness of concretes[J]. Journal of Materials Science,1993,28(21):5717-5721. doi: 10.1007/BF00365171
    [7] 陈燕伟, 冯吉利, 李凤晨, 等. 粗骨料体积分数对混凝土Ⅱ型断裂参数的影响[J]. 复合材料学报, 2021, 38(11):3939-3949. doi: 10.13801/j.cnki.fhclxb.20210115.004

    CHEN Yanwei, FENG Jili, LI Fengchen, et al. Mode II fracture parameters of concrete with different coarse aggregate volume fractions[J]. Acta Materiae Compositae Sinica,2021,38(11):3939-3949(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210115.004
    [8] REINHARDT H W, OZBOLT J, XU S, et al. Shear of structural concrete members and pure Mode II testing[J]. Advanced Cement Based Materials,1997,5:75-85. doi: 10.1016/S1065-7355(96)00003-X
    [9] REINHARDT H W, XU S. Experimental determination of KIIC of normal strength concrete[J]. Materials and Structures,1998,31:296-302. doi: 10.1007/BF02480670
    [10] 高洪波. 混凝土Ⅰ型、Ⅱ型断裂参数确定的研究[D]. 大连: 大连理工大学, 2008.

    GAO Hongbo. Study on the determination of mode I and mode II fracture parameters for concrete[D]. Dalian: Dalian University of Technology, 2008(in Chinese).
    [11] REINHARDT H W, XU S. A practical testing approach to determine mode II fracture energy GIIF for concrete[J]. International Journal of Fracture,2000,105(2):107-125. doi: 10.1023/A:1007649004465
    [12] CABALLERO A, WILLAM K J, CAROL I. Consistent tangent formulation for 3D interface modeling of cracking/fracture in quasi-brittle materials[J]. Computer Methods in Applied Mechanics & Engineering,2008,197(33-40):2804-2822. doi: 10.1016/j.cma.2008.01.011
    [13] LOREFICE R, ETSE G, CAROL I. Viscoplastic approach for rate-dependent failure analysis of concrete joints and interfaces[J]. International Journal of Solids and Structures,2008,45(9):2686-2705. doi: 10.1016/j.ijsolstr.2007.12.016
    [14] HUANG J, LI V C. A meso-mechanical model of the tensile behaviour of concrete. part II: modelling of post-peak tension softening behaviour[J]. Composites,1989,20(4):370-378. doi: 10.1016/0010-4361(89)90662-9
    [15] LI V C, HUANG J. Crack trapping and bridging as toughening mechanisms in high strength concrete[M]. London: Elsevier, 1990: 579-588.
    [16] GANGNANT A, SALIBA J, BORDERIE C L, et al. Modeling of the quasibrittle fracture of concrete at meso-scale: Effect of classes of aggregates on global and local behavior[J]. Cement and Concrete Research,2016,89:35-44. doi: 10.1016/j.cemconres.2016.07.010
    [17] LI G, YU J, CAO P, et al. Experimental and numerical investigation on I–II mixed-mode fracture of concrete based on the Monte Carlo random aggregate distribution[J]. Construction & Building Materials,2018,194:523-534. doi: 10.1016/j.conbuildmat.2018.09.195
    [18] BAZANT Z P, TABBARA M R, KAZEMI M T, et al. Random particle model for fracture of aggregate or fiber composites[J]. Journal of Engineering Mechanics,1990,116(8):1686-1705. doi: 10.1061/(ASCE)0733-9399(1990)116:8(1686)
    [19] SCHANGEN E, VAN MIER J G M. Experimental and numerical analysis of micromechanisms of fracture of cement-based composites[J]. Cement and Concrete Composites,1992,14(2):105-118. doi: 10.1016/0958-9465(92)90004-F
    [20] PEARCE C J, THAVALINGAM A, LIAO Z, et al. Computational aspects of the discontinuous deformation analysis framework for modeling concrete fracture[J]. Engineering Fracture Mechanics,2000,65(2-3):283-298. doi: 10.1016/S0013-7944(99)00121-6
    [21] HILLERBORG A, MODEER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research,1976,6(6):773-781. doi: 10.1016/0008-8846(76)90007-7
    [22] ZHOU W, TANG L, LIU X, et al. Mesoscopic simulation of the dynamic tensile behaviour of concrete based on a rate-dependent cohesive model[J]. International Journal of Impact Engineering,2016,95:165-175. doi: 10.1016/j.ijimpeng.2016.05.003
    [23] LI C, GUO J. Cracking simulation of asphalt concrete beam specimen using cohesive zone model[J]. Construction and Building Materials,2019,214:49-60. doi: 10.1016/j.conbuildmat.2019.04.122
    [24] TRAWINSKI W, BOBINSKI J, TEJCHMAN J. Two-dimensional simulations of concrete fracture at aggregate level with cohesive elements based on X-ray μCT images[J]. Engineering Fracture Mechanics,2016,168:204-226. doi: 10.1016/j.engfracmech.2016.09.012
    [25] TRAWINSKI W, TEJCHMAN J, BOBINSKI J. A three-dimensional meso-scale modelling of concrete fracture, based on cohesive elements and X-ray μCT images[J]. Engineering Fracture Mechanics,2018,189:27-50. doi: 10.1016/j.engfracmech.2017.10.003
    [26] XU S, REINHARDT H W. Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part III: Compact tension specimens and wedge splitting specimens[J]. International Journal of Fracture,1999,98:179-193. doi: 10.1023/A:1018788611620
    [27] STRUBLE L, SKALNY J, MINDESS S. A review of the cement-aggregate bond[J]. Cement and Concrete Research,1980,10(2):277-286. doi: 10.1016/0008-8846(80)90084-8
    [28] LEE K M, BUYUKOZTURK O, OUMERA A. Fracture analysis of mortar-aggregate interfaces in concrete[J]. Journal of Engineering Mechanics,1992,118(10):2031-2046. doi: 10.1061/(ASCE)0733-9399(1992)118:10(2031)
    [29] LANGE F F. The interaction of a crack front with a second-phase dispersion[J]. Philosophical Magazine,1970,22(179):983-992. doi: 10.1080/14786437008221068
    [30] NAUS D J, LOTT J L. Fracture toughness of Portland cement concretes[J]. ACI Journal,1969,66(6):481-489.
    [31] OHGISHI S, ONO H, TAKATSU M, et al. In fracture toughness and fracture energy of concrete[M]. Amsterdam: Elsevier Science Publishers, 1986: 281-290.
    [32] XIE H, FENG J. Implementation of numerical mesostructure concrete material models: A dot matrix method[J]. Materials,2019,12(23):3835. doi: 10.3390/ma12233835
    [33] GUO L, XIANG J, LATHAM J P, et al. A numerical investigation of mesh sensitivity for a new three-dimensional fracture model within the combined finite-discrete element method[J]. Engineering Fracture Mechanics,2016,151:70-91. doi: 10.1016/j.engfracmech.2015.11.006
    [34] MUNJIZA A, JOHN N W M. Mesh size sensitivity of the combined FEM/DEM fracture and fragmentation algorithms[J]. Engineering Fracture Mechanics,2002,69:281-295. doi: 10.1016/S0013-7944(01)00090-X
    [35] MUNJIZA A, OWEN D R J, BICANIC N. A combined finite-discrete element method in transient dynamics of fracturing solids[J]. Engineering Computation,1995,12(2):145-174. doi: 10.1108/02644409510799532
    [36] 熊学玉, 肖启晟. 基于内聚力模型的混凝土细观拉压统一数值模拟方法[J]. 水利学报, 2019, 50(04):44-58.

    XIONG Xueyu, XIAO Qisheng. A unified meso-scale simulation method for concrete under both tension and compression based on cohesive zone model[J]. Journal of Hydraulic Engineering,2019,50(04):44-58(in Chinese).
    [37] ABAQUS. Analysis user’s manual[CP]. Version 6.11, 2011
    [38] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology,1996,56(4):439-449. doi: 10.1016/0266-3538(96)00005-X
    [39] BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics,1962,7(1):55-129.
    [40] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of Mechanics and Physics of Solids,1960,8(2):100-104. doi: 10.1016/0022-5096(60)90013-2
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  1157
  • HTML全文浏览量:  501
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 修回日期:  2021-10-11
  • 录用日期:  2021-10-12
  • 网络出版日期:  2021-10-25
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回