留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PET FRP约束矩形RC柱中纵筋屈曲行为

白玉磊 孙鹏轩 贾俊峰

白玉磊, 孙鹏轩, 贾俊峰. PET FRP约束矩形RC柱中纵筋屈曲行为[J]. 复合材料学报, 2022, 39(10): 4732-4745. doi: 10.13801/j.cnki.fhclxb.20211019.002
引用本文: 白玉磊, 孙鹏轩, 贾俊峰. PET FRP约束矩形RC柱中纵筋屈曲行为[J]. 复合材料学报, 2022, 39(10): 4732-4745. doi: 10.13801/j.cnki.fhclxb.20211019.002
BAI Yulei, SUN Pengxuan, JIA Junfeng. Buckling behavior of steel rebars in PET FRP-confined rectangular RC columns[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4732-4745. doi: 10.13801/j.cnki.fhclxb.20211019.002
Citation: BAI Yulei, SUN Pengxuan, JIA Junfeng. Buckling behavior of steel rebars in PET FRP-confined rectangular RC columns[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4732-4745. doi: 10.13801/j.cnki.fhclxb.20211019.002

PET FRP约束矩形RC柱中纵筋屈曲行为

doi: 10.13801/j.cnki.fhclxb.20211019.002
基金项目: 国家自然科学基金 (51778019;51978017);北京市自然科学基金(8212003);北京市教委青年拔尖人才培养计划项目(CIT&TCD201904018)
详细信息
    通讯作者:

    贾俊峰,博士,教授,博士生导师,研究方向为新材料与新型结构体系 E-mail: jiajunfeng@bjut.edu.cn

  • 中图分类号: TB332

Buckling behavior of steel rebars in PET FRP-confined rectangular RC columns

  • 摘要: 大应变纤维增强聚合物复合材料(LRS FRP)具有大断裂应变(大于5%)的特性,可能带来较高的结构延性,为钢筋混凝土(RC)柱的抗震加固提供了一种新的选择。外包FRP通过混凝土保护层为纵筋提供侧向支撑,防止或减缓纵筋的屈曲。但当箍筋间距较大时纵筋仍可能发生屈曲,尤其是在FRP不均匀约束的矩形柱中,纵筋的提前屈曲降低了柱子的承载能力。为研究不均匀约束情况下,FRP加固柱中钢筋的屈曲行为,本文共设计了28个聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET) FRP约束矩形试件,包括16个RC柱和12个素混凝土(PC)柱,对其进行单调轴压试验,研究FRP层数、箍筋间距和截面形状比对约束柱承载力和延性的影响;从试验结果中得到纵筋的平均应力-应变曲线,对FRP约束RC柱中纵筋的应力-应变关系进行定量分析。结果表明,PET FRP约束RC柱可提高其强度和延性,在一定范围内,当约束刚度越大、截面形状比越接近1时,约束效果越好;外包FRP的侧向支撑作用可将纵筋的屈曲推迟到较高的变形水平。

     

  • 图  1  聚对苯二甲酸乙二醇酯纤维增强聚合物复合材料(PET FRP)约束矩形钢筋混凝土(RC)柱试件详细尺寸及其配筋

    Figure  1.  Detailed dimensions and reinforcement of the polyethylene terephthalate fiber reinforced polymer (PET FRP)-confined rectangular reinforced concrete (RC) column specimens

    图  2  模板(a)和PET FRP拉伸应力-应变曲线(b)

    Figure  2.  Template (a) and tensile stress-strain curves (b) of PET FRP

    Ea and Eb—Elastic modulus of the first and the second straight line

    图  3  试验装置

    Figure  3.  Test setup

    LVDTs—Linear variable displacement transducers

    图  4  PET FRP 约束矩形 RC 柱试件破坏模式及钢筋屈曲

    Figure  4.  Failure model of FRP rupture and buckling of steel in PET FRP-confined rectangular RC specimens

    图  5  一层PET FRP约束矩形混凝土柱试件的荷载-位移曲线

    Figure  5.  Load-displacement curves of one-ply PET FRP-confined rectangular concrete column specimens

    图  6  两层PET FRP约束矩形混凝土柱试件的荷载-位移曲线

    Figure  6.  Load-displacement curves of two-ply PET FRP-confined rectangular concrete column specimens

    图  7  一层PET FRP约束矩形混凝土柱试件峰后软化荷载 (a) 和极限荷载 (b) 与峰值荷载的比值

    Figure  7.  Ratio of load after softening (a) and ultimate axial load (b) to peak axial load of one-ply PET FRP-confined rectangular concrete column specimens

    图  8  两层PET FRP约束矩形混凝土柱试件峰后软化荷载 (a) 和极限荷载 (b) 与峰值荷载的比值

    Figure  8.  Ratio of load after softening (a) and ultimate axial load (b) to peak axial load of two-ply PET FRP-confined rectangular concrete column specimens

    图  9  一层PET FRP约束矩形RC柱中纵筋的应变路径

    Figure  9.  Evolution of strains in longitudinal steel bars of one-ply PET FRP-confined rectangular RC columns

    图  10  两层PET FRP约束矩形RC柱中纵筋的应变路径

    Figure  10.  Evolution of strains in longitudinal steel bars of two-ply PET FRP-confined rectangular RC columns

    图  11  一层PET FRP约束矩形RC柱中纵筋的平均应力-应变曲线

    Figure  11.  Average stress-strain curves of longitudinal rebars in one-ply PET FRP-confined rectangular RC columns

    图  12  两层PET FRP约束矩形RC柱中纵筋的平均应力-应变曲线

    Figure  12.  Average stress-strain curves of longitudinal rebars in two-ply PET FRP-confined rectangular RC columns

    表  1  PET FRP约束矩形混凝土柱试件参数及试验结果

    Table  1.   Key information of PET FRP-confined rectangular concrete column specimens and test results

    Specimen nameCross section/mmType of FRPNumber of plies FRPNominal thickness of FRP/mmPeak axial load Pcc/kNLoad after
    softening
    Pdt/kN
    Ultimate axial load Pcu/kNUltimate axial deformation Δcu/mm
    1PET-200RC(R170)-a 170×130 PET 1 0.841 959.9 874.8 856.5 7.33
    1PET-200RC(R170)-b 170×130 PET 1 0.841 1029.1 933.2 920.6 7.83
    1PET-PC(R170)-a 170×130 PET 1 0.841 907.7 713.9 735.4 4.97
    1PET-PC(R170)-b 170×130 PET 1 0.841 976.2 715.4 710.0 6.74
    1PET-200RC(R180)-a 180×120 PET 1 0.841 1001.1 846.5 853.2 6.29
    1PET-200RC(R180)-b 180×120 PET 1 0.841 1022.0 887.5 900.6 7.56
    1PET-PC(R180)-a 180×120 PET 1 0.841 942.6 713.8 709.0 7.10
    1PET-PC(R180)-b 180×120 PET 1 0.841 879.3 674.8 697.6 9.29
    1PET-200RC(S150)-a 150×150 PET 1 0.841 1026.1 951.0 929.9 5.75
    1PET-200RC(S150)-b 150×150 PET 1 0.841 1007.2 958.9 962.9 5.18
    1PET-PC(S150)-a 150×150 PET 1 0.841 954.2 804.7 793.9 5.92
    1PET-PC(S150)-b 150×150 PET 1 0.841 948.4 807.4 772.0 6.80
    1PET-240RC(S150)-a 150×150 PET 1 0.841
    1PET-240RC(S150)-b 150×150 PET 1 0.841 1035.2 998.6 998.2 5.08
    1PET-PC(S150)-a 150×150 PET 1 0.841 956.5 808.1 799.9 5.94
    1PET-PC(S150)-b 150×150 PET 1 0.841 948.4 785.1 772.0 6.80
    2PET-200RC(R170)-a 170×130 PET 2 1.682
    2PET-200RC(R170)-b 170×130 PET 2 1.682 1179.7 1142.0 1309.9 9.69
    2PET-PC(R170)-a 170×130 PET 2 1.682 1083.1 982.8 1256.1 9.16
    2PET-PC(R170)-b 170×130 PET 2 1.682 1059.9 921.9 1042.4 7.20
    2PET-200RC(R180)-a 180×120 PET 2 1.682 1135.2 1096.2 1204.7 9.35
    2PET-200RC(R180)-b 180×120 PET 2 1.682 1197.5 1129.1 1230.9 11.31
    2PET-PC(R180)-a 180×120 PET 2 1.682 1004.4 878.1 1050.1 9.50
    2PET-PC(R180)-b 180×120 PET 2 1.682 1045.8 854.0 1047.5 9.76
    2PET-200RC(S150)-a 150×150 PET 2 1.682 1246.2 1387.1 8.63
    2PET-200RC(S150)-b 150×150 PET 2 1.682 1277.9 1272.5 1466.9 9.74
    2PET-PC(S150)-a 150×150 PET 2 1.682 1123.1 1080.6 1200.7 6.80
    2PET-PC(S150)-b 150×150 PET 2 1.682 1110.2 1063.9 1421.9 9.40
    2PET-240RC(S150)-a 150×150 PET 2 1.682
    2PET-240RC(S150)-b 150×150 PET 2 1.682 1222.8 1428.1 9.71
    2PET-PC(S150)-a 150×150 PET 2 1.682 1126.8 1080.9 1200.7 6.80
    2PET-PC(S150)-b 150×150 PET 2 1.682 1110.7 1061.3 1413.1 9.40
    Notes: PET—Polyethylene terephthalate; RC—Reinforced concrete; PC—Plain concrete; Specimen name VW-X(Y)-Z: V—Number of plies; W—Type of FRP; X—Type of columns and stirrup spacing for RC columns; Y—Section type and width; S—Square column; R—Rectangular column; Z—a and b represent two identical components.
    下载: 导出CSV

    表  2  钢筋力学性能参数

    Table  2.   Mechanical parameters of steel

    Bar typefy/MPafu/MPaEs/GPaεu/%
    Φ1242857920224.6
    Φ845364920120.6
    Notes: fy and fu—Yield stress and tensile strength of the bars, respectively; Es—Elasticity modulus of the bars; εu—Ultimate strain.
    下载: 导出CSV

    表  3  PET FRP约束矩形混凝土柱试件中钢筋应力-应变曲线上重要点的值

    Table  3.   Values of important points on the stress-strain curves of longitudinal rebars in PET FRP-confined rectangular concrete column specimens

    Specimen namefcc/MPaεcc/%εfy/%fcm/MPaεcm/%fcu/MPaεcu/%
    1PET-200RC(R170)-a88.70.74395.62.37332.52.92
    1PET-200RC(R170)-b114.40.301.37508.12.29449.52.92
    1PET-200RC(R180)-a190.80.95423.23.18403.83.70
    1PET-200RC(R180)-b99.20.082.26406.71.10484.33.70
    1PET-200RC(S150)-a71.30.231.94428.01.94411.63.05
    1PET-200RC(S150)-b63.00.212.02439.42.70432.53.05
    1PET-240RC(S150)-b117.10.341.19526.42.50496.13.01
    1PET-200RC(R170)-b47.30.181.50503.42.86460.74.23
    1PET-200RC(R180)-a54.30.021.10552.42.10427.25.50
    1PET-200RC(R180)-b176.00.090.63636.13.27459.45.05
    1PET-200RC(S150)-a88.70.211.54551.02.82450.54.00
    1PET-200RC(S150)-b263.10.131.19528.93.16480.04.00
    1PET-240RC(S150)-b90.40.58426.02.57353.04.00
    Notes:fcc and εcc—Stress and strain at the beginning point; εfy—Strain when the stress reaches yield strength; fcm and εcm—Peak stress and strain, respectively; fcu and εcu—Yield stress and ultimate strain, respectively.
    下载: 导出CSV
  • [1] LAM L, TENG J G. Design-oriented stress-strain model for FRP-confined concrete[J]. Construction and Building Materials,2003,17(6-7):471-489. doi: 10.1016/S0950-0618(03)00045-X
    [2] WU Y F, WEI Y Y. Effect of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns[J]. Engineering Structures,2009,32(1):32-45. doi: 10.1016/j.engstruct.2009.08.012
    [3] HANY N F, HANTOUCHE E G, HARAJLI M H. Axial stress-strain model of CFRP-confined concrete under monotonic and cyclic loading[J]. Journal of Composites for Construction,2015,19(6):04015004. doi: 10.1061/(ASCE)CC.1943-5614.0000557
    [4] BOURNAS D A, TRIANTAFILLOU T C. Bar buckling in RC columns confined with composite materials[J]. Journal of Composites for Construction,2011,15(3):393-403. doi: 10.1061/(ASCE)CC.1943-5614.0000180
    [5] SHAHZAD S, AMORN P, IRSHAD Q M, et al. Axial behavior of PET FRP-confined reinforced concrete[J]. Journal of Composites for Construction,2021,25(1):1-17. doi: 10.1061/(ASCE)CC.1943-5614.0001092
    [6] DAI J G, BAI Y L, TENG J G. Behavior and modeling of concrete confined with FRP composites of large deformability[J]. Journal of Composites for Construction,2011,15(6):963-973. doi: 10.1061/(ASCE)CC.1943-5614.0000230
    [7] DAI J G, LAM L, UEDA T. Seismic retrofit of square RC columns with polyethylene terephthalate (PET) fibre reinforced polymer composites[J]. Construction and Building Materials,2011,27(1):206-217. doi: 10.1016/j.conbuildmat.2011.07.058
    [8] BAI Y L, DAI J G, TENG J G. Cyclic compressive behavior of concrete confined with large rupture strain FRP composites[J]. Journal of Composites for Construction,2014,18(1):04013025. doi: 10.1061/(ASCE)CC.1943-5614.0000386
    [9] ISPIR M. Monotonic and cyclic compression tests on concrete confined with PET-FRP[J]. Journal of Composites for Construction,2014,19(1):04014034. doi: 10.1061/(ASCE)CC.1943-5614.0000490
    [10] YE Y Y, LIANG S D, FENG P, et al. Recyclable LRS FRP composites for engineering structures: Current status and future opportunities[J]. Composites Part B: Engineering,2021,212:108689. doi: 10.1016/j.compositesb.2021.108689
    [11] 国家基本建筑委员会. 钢筋混凝土结构设计规范: TJ 10—74[S]. 北京: 中国建筑工业出版社, 1974.

    State Infrastructure Commission. Code for design of reinforced concrete structures: TJ 10—74[S]. Beijing: China Building Industry Press, 1974(in Chinese).
    [12] 国家基本建筑委员会. 混凝土结构设计规范: GBJ 10—89[S]. 北京: 中国建筑工业出版社, 1989.

    State Infrastructure Commission. Design code for concrete structures: GBJ 10—89[S]. Beijing: China Building Industry Press, 1989(in Chinese).
    [13] 交通部公路规划设计院. 公路钢筋混凝土及预应力混凝土桥涵设计规范: JTJ 023—85[S]. 北京: 人民交通出版社, 1985.

    Highway Planning and Design Institute of the Ministry of Communications. Code for design of reinforced concrete and prestressed concrete bridges and culverts for highways: JTJ 023—85[S]. Beijing: People's Communications Press, 1985(in Chinese).
    [14] BAI Y L, DAI J G, TENG J G. Buckling of steel reinforcing bars in FRP-confined RC columns: An experimental study[J]. Construction and Building Materials,2017,140:403-415. doi: 10.1016/j.conbuildmat.2017.02.149
    [15] BAI Y L, DAI J G, TENG J G. Monotonic stress-strain beha-vior of steel rebars embedded in FRP-confined concrete including buckling[J]. Journal of Composites for Construction,2017,21(5):04017043.1-04017043.11. doi: 10.1061/(ASCE)CC.1943-5614.0000823
    [16] SATO Y, KO H. Modeling of reinforcement buckling in RC columns confined with FRP[J]. Journal of Advanced Concrete Technology,2008,6(1):195-204. doi: 10.3151/jact.6.195
    [17] GIAMUNDO V, LIGNOLA G P, PROTA A, et al. Analytical evaluation of FRP wrapping effectiveness in restraining reinforcement bar buckling[J]. Journal of Structural En-gineering,2014,140(7):4014043. doi: 10.1061/(ASCE)ST.1943-541X.0000985
    [18] BAI Y L, DAI J G, OZBAKKALOGLU T. Cyclic stress-strain model incorporating buckling effect for steel reinforcing bars embedded in FRP-confined concrete[J]. Composite Structures,2017,182:54-66. doi: 10.1016/j.compstruct.2017.09.007
    [19] 白玉磊, 韩强, 贾俊峰, 等. FRP约束钢筋混凝土柱中钢筋屈曲行为研究[J]. 防灾减灾工程学报, 2018, 38(1):14-21. doi: 10.13409/j.cnki.jdpme.2018.01.003

    BAI Yulei, HAN Qiang, JIA Junfeng, et al. Buckling beha-vior of steel rebars embedded in FRP-confined concrete[J]. Journal of Disaster Prevention and Reduction,2018,38(1):14-21(in Chinese). doi: 10.13409/j.cnki.jdpme.2018.01.003
    [20] SALEEM S, HUSSAIN Q, PIMANMAS A. Compressive behavior of PET FRP-confined circular, square, and rectangular concrete columns[J]. Journal of Composites for Construction,2017,21(3):04016097. doi: 10.1061/(ASCE)CC.1943-5614.0000754
    [21] ISLEEM H F, WANG Z Y, WANG D Y, et al. Monotonic and cyclic axial compressive behavior of CFRP-confined rectangular RC columns[J]. Journal of Composites for Construction,2018,22(4):4018023. doi: 10.1061/(ASCE)CC.1943-5614.0000860
    [22] SILVA M A G. Behavior of square and circular columns strengthened with aramidic or carbon fibers[J]. Construction and Building Materials,2011,25(8):3222-3228. doi: 10.1016/j.conbuildmat.2011.03.007
    [23] HAN Q, YUAN W Y, BAI Y L, et al. Compressive behavior of large rupture strain (LRS) FRP-confined square concrete columns: Experimental study and model evaluation[J]. Materials and Structures,2020,53(4):1149-1186. doi: 10.1617/s11527-020-01534-4
    [24] MAI A D, SHEIKH M N, YAMAKADO K, et al. Nonuniform CFRP wrapping to prevent sudden failure of FRP confined square RC columns[J]. Journal of Composites for Construction,2020,24(6):4020063. doi: 10.1061/(ASCE)CC.1943-5614.0001077
    [25] ISLEEM H F, WANG D Y, WANG Z Y. A new numerical model for polymer-confined rectangular concrete columns[J]. Proceedings of the Institution of Civil En-gineers-Structures and Buildings,2019,172(7):528-544. doi: 10.1680/jstbu.17.00103
    [26] ISLEEM H F, TAHIR M, WANG Z Y. Axial stress-strain model developed for rectangular RC columns confined with FRP wraps and anchors[J]. Structures,2020,23:779-788. doi: 10.1016/j.istruc.2019.12.020
    [27] ASTM. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/D3039M-08[S]. West Conshohocken: ASTM Internation, 2008.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  717
  • HTML全文浏览量:  334
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12
  • 修回日期:  2021-09-18
  • 录用日期:  2021-10-08
  • 网络出版日期:  2021-10-20
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回