留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维复合材料双箭头波纹拉胀结构的振动行为及减振性能

刘彦佐 李振羽 杨金水

刘彦佐, 李振羽, 杨金水. 碳纤维复合材料双箭头波纹拉胀结构的振动行为及减振性能[J]. 复合材料学报, 2022, 39(8): 4117-4128. doi: 10.13801/j.cnki.fhclxb.20211019.001
引用本文: 刘彦佐, 李振羽, 杨金水. 碳纤维复合材料双箭头波纹拉胀结构的振动行为及减振性能[J]. 复合材料学报, 2022, 39(8): 4117-4128. doi: 10.13801/j.cnki.fhclxb.20211019.001
LIU Yanzuo, LI Zhenyu, YANG Jinshui. Vibration behavior and damping performance of carbon fiber composite double-arrow corrugated auxetic structures[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4117-4128. doi: 10.13801/j.cnki.fhclxb.20211019.001
Citation: LIU Yanzuo, LI Zhenyu, YANG Jinshui. Vibration behavior and damping performance of carbon fiber composite double-arrow corrugated auxetic structures[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4117-4128. doi: 10.13801/j.cnki.fhclxb.20211019.001

碳纤维复合材料双箭头波纹拉胀结构的振动行为及减振性能

doi: 10.13801/j.cnki.fhclxb.20211019.001
基金项目: 国家自然科学基金(11802070);中国科协青年人才托举工程(2019QNRC001);黑龙江省自然科学基金优秀青年项目(YQ2020A001);中国博士后科学基金特别资助项目(2020T130141);中央高校基本科研业务费(3072021CFT0201)
详细信息
    通讯作者:

    杨金水,博士,副教授,博士生导师,研究方向为轻质多功能复合材料结构力学 E-mail: yangjinshui@hrbeu.edu.cn

  • 中图分类号: TB332

Vibration behavior and damping performance of carbon fiber composite double-arrow corrugated auxetic structures

  • 摘要: 复合材料负泊松比结构具有优异的力学性能,近年来受到了国内外学者的广泛关注。运用模压成型工艺和热压罐工艺制备了梯形和正弦形二维双箭头碳纤维增强复合材料多孔拉胀夹芯结构,使用振动台装置对结构进行扫频试验,获得了结构的振动频响曲线。建立了结构的三维有限元模型,并与试验结果对比,验证了仿真模型的准确性。基于此,系统研究了单胞厚度、角度、拓扑构型和厚度梯度等参数对结构的振动特性及减振性能的影响。结果表明,随着芯子单胞厚度和角度的增加,结构的固有频率上升,加速度响应峰值下降,结构的减振性能提高。相比于正弦形结构,梯形结构通常具有更高的固有频率和更好的减振性能。相比其他均匀和梯度结构,渐弱结构具有较好的减振性能。

     

  • 图  1  复合材料拉胀双箭头波纹夹芯结构(DACSPs)及单胞尺寸

    Figure  1.  Structure and cell size of composites auxetic double-arrow corrugated sandwich panels (DACSPs)

    a—Length; b—Width; h—Height; tf—Thickness; d—Hypotenuse span of trapezoidal corrugated plate; tc—Thickness of corrugated plate thickness; dh—Flat span of trapezoidal corrugated plate; θ—Angle

    图  2  复合材料拉胀DACSPs制备流程图

    Figure  2.  Preparation process of composites auxetic DACSPs

    图  3  复合材料拉胀DACSPs结构

    Figure  3.  Structures of composite auxetic DACSPs

    图  4  正弦扫频试验工作原理

    Figure  4.  Working principle of sinusoidal sweep test

    图  5  测试点位置

    Figure  5.  Test points location

    A, B, C, D—Test points

    图  6  复合材料拉胀DACSPs结构的仿真模型

    Figure  6.  Simulation model of composite auxetic DACSPs structure

    图  7  复合材料拉胀DACSPs结构的网格收敛性分析

    Figure  7.  Analysis of mesh convergence for composite auxetic DACSPs structure

    图  8  复合材料拉胀DACSPs结构仿真准确性验证

    Figure  8.  Simulation accuracy verification of composite auxetic DACSPs structure

    图  9  不同角度DACSPs试件加速度频响曲线对比

    Figure  9.  Comparison of acceleration frequency response curves of DACSPs specimens with different angles

    图  10  不同厚度DACSPs试件加速度频响曲线对比

    Figure  10.  Comparison of acceleration frequency response curves of DACSPs specimens with different thickness values

    图  11  拓扑构型对DACSPs结构频响曲线的影响

    Figure  11.  Influence of topological configuration on structural frequency response curve of DACSPs structure

    图  12  变梯度正弦形结构DACSPs加速度频响曲线

    Figure  12.  Acceleration frequency response curves of sinusoidal structure DACSPs with variable gradient

    图  13  变梯度梯形结构DACSPs加速度频响曲线

    Figure  13.  Acceleration frequency response curves of trapezoid structure DACSPs with variable gradient

    表  1  文中常见复合材料拉胀DACSPs结构代号与代号含义

    Table  1.   Composite auxetic DACSPs structure code and code meaning in this paper

    Model
    code
    Type of
    corrugated plate
    Corrugated
    plate angle
    Corrugated plate
    thickness/mm
    Model
    code
    Type of
    corrugated plate
    Corrugated
    plate angle
    Corrugated plate
    thickness/mm
    S121Sinusoid (S)15°/30°(12)0.50(1)T121Trapezoid (T)15°/30°(12)0.50(1)
    S122Sinusoid (S)15°/30°(12)0.75(2)T122Trapezoid (T)15°/30°(12)0.75(2)
    S131Sinusoid (S)15°/45°(13)0.50(1)T131Trapezoid (T)15°/45°(13)0.50(1)
    S132Sinusoid (S)15°/45°(13)0.75(2)T132Trapezoid (T)15°/45°(13)0.75(2)
    S141Sinusoid (S)15°/60°(14)0.50(1)T141Trapezoid (T)15°/60°(14)0.50(1)
    S142Sinusoid (S)15°/60°(14)0.75(2)T142Trapezoid (T)15°/60°(14)0.75(2)
    S231Sinusoid (S)30°/45°(23)0.50(1)T231Trapezoid (T)30°/45°(23)0.50(1)
    S232Sinusoid (S)30°/45°(23)0.75(2)T232Trapezoid (T)30°/45°(23)0.75(2)
    S241Sinusoid (S)30°/60°(24)0.50(1)T241Trapezoid (T)30°/60°(24)0.50(1)
    S242Sinusoid (S)30°/60°(24)0.75(2)T242Trapezoid (T)30°/60°(24)0.75(2)
    S341Sinusoid (S)45°/60°(34)0.50(1)T341Trapezoid (T)45°/60°(34)0.50(1)
    S342Sinusoid (S)45°/60°(34)0.75(2)T342Trapezoid (T)45°/60°(34)0.75(2)
    下载: 导出CSV

    表  2  碳纤维增强树脂基复合材料层合板的力学性能

    Table  2.   Mechanical properties of carbon fiber reinforced resin composite laminates

    PropertyValue
    Longitudinal Young’s modulus $ {E}_{1}/\mathrm{G}\mathrm{P}\mathrm{a} $ $ 51.5 $
    Transverse modulus $ {E}_{2}/\mathrm{G}\mathrm{P}\mathrm{a} $ $ 51.5 $
    Out-of-plane modulus $ {E}_{3}/\mathrm{G}\mathrm{P}\mathrm{a} $ $ 10.1 $
    Poisson's ratio $ {\nu }_{12} $ 0.32
    Poisson's ratio $ {\nu }_{13},{\nu }_{23} $ 0.30
    Shear modulus $ {G}_{12}/\mathrm{G}\mathrm{P}\mathrm{a} $ $4.0$
    Shear modulus $ {G}_{13},{G}_{23}/\mathrm{G}\mathrm{P}\mathrm{a} $ $ 4.8 $
    Density $ \rho $/(kg·m−3) $1\;523.3$
    下载: 导出CSV

    表  3  DACSPs结构减振能力归一化指标

    Table  3.   Normalized index of DACSPs structural damping capacity Unit: m·s−2·g−1

    S121S122S131S132S141S142S231S232S241S242S341S342
    2.16 1.47 2.05 1.43 1.92 1.20 1.16 0.65 1.08 0.71 0.60 0.36
    T121 T122 T131 T132 T141 T142 T231 T232 T241 T242 T341 T342
    2.03 2.03 1.56 1.71 1.13 1.00 0.71 0.91 0.59 0.34 0.25
    下载: 导出CSV

    表  4  DACSPs波纹板排布方式代号

    Table  4.   Code of corrugated plate arrangement DACSPs Unit: mm

    CodeProgressive
    (P)
    Weakening
    (W)
    Strong-weak-strong
    (SWS)
    Weak-strong-weak
    (WSW)
    Uniform
    (U)
    Thickness of top corrugated plate 1.00 0.50 1.00 0.50 1.00
    Thickness of middle corrugated plate 0.75 0.75 0.50 1.00 1.00
    Thickness of bottom corrugated plate 0.50 1.00 1.00 0.50 1.00
    下载: 导出CSV

    表  5  正弦形(S)五种梯度化构型DACSPs的前三阶固有频率

    Table  5.   First three natural frequencies of five sinusoidal (S) graded configurations DACSPs Unit: Hz

    S-US241S-PS-WS-SWSS-WSW
    Modal-1 789.6 773.1 742.3 804.9 755.1 811.5
    Modal-2 1015.2 992.3 1007.1 971.7 967.6 1041.6
    Modal-3 1478.1 1248.0 1329.2 1416.3 1339.9 1299.2
    下载: 导出CSV

    表  6  五种梯度化(T)构型DACSPs的前三阶固有频率

    Table  6.   First three natural frequencies of five trapezoid (T) graded configurations DACSPs Unit: Hz

    T-UT241T-PT-WT-SWST-WSW
    Modal-1998.1958.7941.71023.5946.11013.0
    Modal-21239.01181.11230.21188.01176.11248.4
    Modal-31599.71318.51383.11475.01381.31375.4
    下载: 导出CSV
  • [1] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3):656-687. doi: 10.6052/0459-1879-18-381

    REN Xin, ZHANG Xiangyu, XIE Yimin. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics,2019,51(3):656-687(in Chinese). doi: 10.6052/0459-1879-18-381
    [2] WU X, SU Y, SHI J. In-plane impact resistance enhancement with a graded cell-wall angle design for auxetic metamaterials[J]. Composite Structures,2020,247:112451. doi: 10.1016/j.compstruct.2020.112451
    [3] GAO Q, LIAO W H, WANG L M. On the low-velocity impact responses of auxetic double-arrowed honeycomb[J]. Aerospace Science and Technology, 2020, 98: 105698.
    [4] WEI L, ZHAO X, YU Q, et al. A novel star auxetic honeycomb with enhanced in-plane crushing strength[J]. Thin-Walled Structures,2020,149:106623. doi: 10.1016/j.tws.2020.106623
    [5] 卢子兴, 李康. 手性和反手性蜂窝材料的面内冲击性能研究[J]. 振动与冲击, 2017, 36(21):16-22, 39.

    LU Zixing, LI Kang. In-plane dynamic crushing of chiral and anti-chiral honeycombs[J]. Journal of Vibration and Shock,2017,36(21):16-22, 39(in Chinese).
    [6] QI C, JIANG F, YU C, et al. In-plane crushing response of tetrachiral honeycombs[J]. International Journal of Impact Engineering,2019,130:247-265.
    [7] 吴林志, 熊健, 马力, 等. 新型复合材料点阵结构的研究进展[J]. 力学进展, 2012, 42(1):41-67.

    WU Linzhi, XIONG Jian, MA Li, et al. Processes in the study on novel composite sandwich panels with lattice truss cores[J]. Advances in Mechanics,2012,42(1):41-67(in Chinese).
    [8] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [9] LI S, YANG J S, WU L Z, et al. Vibration behavior of metallic sandwich panels with hourglass truss cores[J]. Marine Structures,2018,63:84-98.
    [10] 史齐. 负泊松比蜂窝夹芯结构性能表征及优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    SHI Qi. Optimization and mechanics characteristics study of the negative poisson's ratio honeycomb sandwich structure[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [11] 杜义贤, 李荣, 田启华, 等. 具有吸能和承载特性的多孔结构拓扑优化[J]. 华中科技大学学报(自然科学版), 2019, 47(8):108-113.

    DU Yixian, LI Rong, TIAN Qihua, et al. Topological optimi-zation of porous structure with energy absorption and loading capability[J]. Huazhong University of Science & Technology (Natural Science Edition),2019,47(8):108-113(in Chinese).
    [12] 侯秀慧, 尹冠生. 负泊松比蜂窝抗冲击性能分析[J]. 机械强度, 2016, 38(5):905-910.

    HOU Xiuhui, YIN Guansheng. Dynamic crushing perfor-mance analysis for auxetic honeycomb structure[J]. Jour-nal of Mechanical Strength,2016,38(5):905-910(in Chinese).
    [13] XIAO Y, CAO J Z, WANG S X, et al. Sound transmission loss of plate-type metastructures: Semi-analytical modeling, elaborate analysis, and experimental validation[J]. Mechanical Systems and Signal Processing,2021,153:107487.
    [14] JI J C, LUO Q T, YE K. Vibration control based metamaterials and origami structures: A state-of-the-art review[J]. Mechanical Systems and Signal Processing,2021,161:107945.
    [15] AN X Y, LAI C L, FAN H L, et al. 3D acoustic metamaterial-based mechanical metalattice structures for low-frequency and broadband vibration attenuation[J]. International Journal of Solids and Structures, 2020, (191-192): 293-306.
    [16] 韩会龙, 张新春, 王鹏. 负泊松比蜂窝材料的动力学响应及能量吸收特性[J]. 爆炸与冲击, 2019, 39(1):47-57.

    HAN Huilong, ZHANG Xinchun, WANG Peng. Dynamic responses and energy absorption properties of honeycombs with negative poisson's ratio[J]. Explosion and Shock Waves,2019,39(1):47-57(in Chinese).
    [17] 尹冠生, 姚兆楠. 梯度负泊松比蜂窝材料的冲击动力学性能分析[J]. 动力学与控制学报, 2017, 15(1):52-58.

    YIN Guansheng, YAO Zhaonan. Dynamic crushing performance of graded auxetic honeycombs with negative poisson's ratio[J]. Journal of Dynamics and Control,2017,15(1):52-58(in Chinese).
    [18] 张伟. 三维负泊松比多胞结构的轴向压缩性能研究[D]. 大连: 大连理工大学, 2015.

    ZHANG Wei. The study on axial compression properties of three-dimensional negative poisson’s ratio cellular structure[D]. Dalian: Dalian University of Technology, 2015(in Chinese).
    [19] MOHSENIZADEH S, AHMAD Z. Auxeticity effect on crushing characteristics of auxetic foam-filled square tubes under axial loading[J]. Thin-Walled Structures,2019,145:106379. doi: 10.1016/j.tws.2019.106379
    [20] XIAO D, DONG Z, LI Y, et al. Compression behavior of the graded metallic auxetic reentrant honeycomb: Experiment and finite element analysis[J]. Materials Science and Engineering A,2019,758:163-171.
    [21] KALISKE M, ROTHERT H. Damping characterrization of unidirectional fibre reinforced polymer composites[J]. Composites Engineering,1995,5(5):271-283.
    [22] ADAMS R D, BACON D G C. Measurement of the flexural damping capacity and dynamic Young's modulus of metals and reinforced plastics[J]. Journal of Physics D: Applied Physics,1973(1):27-41.
    [23] MAHERI M R, ADAMS R D. Finite-element prediction of modal response of damped layered composite panels[J]. Composites Science and Technology,1995(1):13-23.
    [24] GIBSON R F. Modal vibration response measurements for characterization of composite materials and structures[J]. Composites Science and Technology,2000(15):2769-2780.
    [25] YANG J S, MA L, CHAVES-VARGAS M, et al. Influence of manufacturing defects on modal properties of composite pyramidal truss-like core sandwich cylindrical panels[J]. Composites Science and Technology,2017,147:89-99.
    [26] MA L, CHEN Y L, YANG J S, et al. Modal characteristics and damping enhancement of carbon fiber composite auxetic double-arrow corrugated sandwich panels[J]. Composie Structures,2018, 203:539-550.
    [27] YANG J S, XIONG J, LI M, et al. Vibration and damping characteristics of hybrid carbon fiber composite pyrami-dal truss sandwich panels with viscoelastic layers[J]. Composite Structures,2013,106(12):570-580.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  1113
  • HTML全文浏览量:  666
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-15
  • 修回日期:  2021-09-27
  • 录用日期:  2021-10-11
  • 网络出版日期:  2021-10-26
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回