留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多壁碳纳米管增强混凝土的抗氯离子渗透性能

施韬 赵启帆 胡卓君 刘艳明

施韬, 赵启帆, 胡卓君, 等. 多壁碳纳米管增强混凝土的抗氯离子渗透性能[J]. 复合材料学报, 2022, 39(10): 4769-4777. doi: 10.13801/j.cnki.fhclxb.20211014.001
引用本文: 施韬, 赵启帆, 胡卓君, 等. 多壁碳纳米管增强混凝土的抗氯离子渗透性能[J]. 复合材料学报, 2022, 39(10): 4769-4777. doi: 10.13801/j.cnki.fhclxb.20211014.001
SHI Tao, ZHAO Qifan, HU Zhuojun, et al. Chloride ion penetration resistance of multi-walled carbon nanotubes reinforced concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4769-4777. doi: 10.13801/j.cnki.fhclxb.20211014.001
Citation: SHI Tao, ZHAO Qifan, HU Zhuojun, et al. Chloride ion penetration resistance of multi-walled carbon nanotubes reinforced concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4769-4777. doi: 10.13801/j.cnki.fhclxb.20211014.001

多壁碳纳米管增强混凝土的抗氯离子渗透性能

doi: 10.13801/j.cnki.fhclxb.20211014.001
基金项目: 国家自然科学基金面上项目(52078460;51778582);硅酸盐建筑材料国家重点实验室开放基金重点项目(SYSJJ2020-06)
详细信息
    通讯作者:

    施韬,博士,教授,博士生导师,研究方向为先进水泥基材料 E-mail: shitao@zjut.edu.cn

  • 中图分类号: TU528

Chloride ion penetration resistance of multi-walled carbon nanotubes reinforced concrete

  • 摘要: 采用快速氯离子迁移系数(RCM)法和自然浸泡法对多壁碳纳米管(MWCNTs)增强混凝土的抗氯离子渗透性能进行研究,测量混凝土试件纵向断面上的氯离子扩散深度,据此计算氯离子扩散系数。试验结果表明:当MWCNTs掺量为0.15wt%时,混凝土28天的氯离子扩散深度、氯离子扩散系数分别降低了25.7%、19.1%;在4种不同侵蚀龄期的自然浸泡下,掺入MWCNTs的混凝土,内部氯离子浓度始终低于对照组。结合两种方法分析得出:混凝土内部各深度的自由氯离子浓度随着MWCNTs掺量的增加而降低,致使氯离子扩散系数随着MWCNTs掺量的增加而变小,MWCNTs的掺入提高了混凝土的抗氯离子渗透性能。此外,通过SEM和压汞(MIP)测试进一步探究MWCNTs对混凝土抗氯离子渗透性能的微观增强机制,分析结果表明,MWCNTs具有一定的桥接和填充效应,这可能使混凝土裂缝扩展受到抑制、孔隙更加细化,从而改善混凝土的微观结构,提高混凝土的抗氯离子渗透性能。

     

  • 图  1  MWCNTs的TEM图像

    Figure  1.  TEM images of MWCNTs

    图  2  快速氯离子迁移系数(RCM)法装置示意图

    Figure  2.  Schematic diagram of rapid chloride migrationcoefficient (RCM) method device

    图  3  图像处理测定方法示意图

    Figure  3.  Schematic diagrams of images processing measurement method

    图  4  不同MWCNTs掺量混凝土的28天氯离子扩散深度和非稳态氯离子迁移系数$ {D}_{\mathrm{R}\mathrm{C}\mathrm{M}} $

    Figure  4.  Chloride diffusion depth and unstable chloride ion diffusion coefficient $ {D}_{\mathrm{R}\mathrm{C}\mathrm{M}} $ of concrete with different MWCNTs contents at 28 days

    图  5  30天、60天、90天和120天后不同MWCNTs掺量混凝土的不同深度自由氯离子浓度

    Figure  5.  Free chloride ion concentration at different depths of concrete with different MWCNTs contents after 30 days, 60 days, 90 days and 120 days

    图  6  不同MWCNTs掺量混凝土的孔隙累计进汞量曲线 (a) 和孔径分布曲线 (b)

    Figure  6.  Cumulative mercury penetration curves (a) and pore size distribution curves (b) of concrete with different MWCNTs contents

    图  7  不同MWCNTs掺量混凝土的孔径结构分布

    Figure  7.  Pore size distribution of concrete with different MWCNTs contents

    图  8  28天不同MWCNTs掺量混凝土的SEM图像

    Figure  8.  SEM images of concrete with different MWCNTs contents in 28 days

    表  1  水泥的化学组成

    Table  1.   Chemcial compositions of cement wt%

    MaterialCaOSiO2Al2O3Fe2O3SO3MgOLoss
    Cement64.4722.184.513.152.561.21.36
    下载: 导出CSV

    表  2  多壁碳纳米管(MWCNTs)浆料的参数

    Table  2.   Parameters of multi-walled carbon nanotubes (MWCNTs) aqueous paste

    ModelMediumMedium content/wt%CNTs modelCNTs content/wt%DispersantDispersant content/wt%
    TNWPM-M8Water88TNIM810TNWDIS2
    下载: 导出CSV

    表  3  MWCNTs的物理特性

    Table  3.   Physical parameters of MWCNTs

    ModelOuter diameter/nmPurity/wt%Length/μmSpecial surface area/(m2·g−1)Tap density/(g·cm−3)
    TNIM830-80>955-10>600.18
    下载: 导出CSV

    表  4  不同MWCNTs掺量混凝土的配合比

    Table  4.   Mix proportions of concrete with different contents of MWCNTs

    Specimen groupMWCNTs
    /wt%
    TNWDIS
    /wt%
    Water
    /kg
    Cement
    /kg
    Sand
    /kg
    Aggregate
    /kg
    Slump
    /mm
    C0.000.03230437656107780
    0.05wt%MWCNTs/C0.050.03230437656107780
    0.10wt%MWCNTs/C0.100.03230437656107780
    0.15wt%MWCNTs/C0.150.03230437656107780
    下载: 导出CSV

    表  5  不同MWCNTs掺量混凝土的孔径结构参数

    Table  5.   Pore structure parameters of concrete with different MWCNTs contents

    Specimen groupHarmless pore
    (<20 nm)/%
    Less harmful pore
    (20-50 nm)/%
    Harmful pore
    (50-200 nm)/%
    More harmful pore
    (>200 nm)/%
    C36.6720.0827.2316.01
    0.05wt%MWCNTs/C38.3431.7421.018.91
    0.10wt%MWCNTs/C40.8432.1819.397.60
    0.15wt%MWCNTs/C41.1038.8111.049.06
    下载: 导出CSV
  • [1] JIN M, JIANG L, LU M, et al. Monitoring chloride ion penetration in concrete structure based on the conductivity of graphene/cement composite[J]. Construction and Building Materials,2017,136:394-404. doi: 10.1016/j.conbuildmat.2017.01.054
    [2] HUANG D G, NIU D T, ZHENG H, et al. Study on chloride transport performance of eco-friendly coral aggregate concrete in marine environment[J]. Construction and Building Materials,2020,258:120272. doi: 10.1016/j.conbuildmat.2020.120272
    [3] 李庚英, 王中坤. 碳纳米管对钢筋混凝土耐氯盐腐蚀性能的影响[J]. 华中科技大学学报(自然科学版), 2018, 46(3):103-107.

    LI Gengying, WANG Zhongkun. Effect of CNTs on the corrosion performance of reinforced concrete[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition),2018,46(3):103-107(in Chinese).
    [4] SHI T, GAO Y, CORR D J, et al. FTIR study on early-age hydration of carbon nanotubes-modified cement-based materials[J]. Advances in Cement Research,2019,31(8):353-361. doi: 10.1680/jadcr.16.00167
    [5] LAN Y J, SHI T, FU Y Y, et al. Preliminary investigation on silicon carbide whisker-modified cement-based composites[J]. Open Ceramics,2021,6:100107. doi: 10.1016/j.oceram.2021.100107
    [6] YE Y X, LIU Y M, SHI T, et al. Effect of nano-magnesium oxide on the expansion performance and hydration process of cement-based materials[J]. Materials,2021,14(13):3766. doi: 10.3390/ma14133766
    [7] REN M, SHI T, CORR D J, et al. Mechanical properties of micro-regions in cement-based material based on the peakforce QNM mode of AFM[J]. Journal of Wuhan University of Technology (Materials Science Edition),2019,34(4):893-899. doi: 10.1007/s11595-019-2134-7
    [8] CARRIO A, BOGAS J A, HAWREEN A, et al. Durability of multi-walled carbon nanotube reinforced concrete[J]. Construction and Building Materials,2018,164:121-133. doi: 10.1016/j.conbuildmat.2017.12.221
    [9] WANG T, XU J, MENG B, et al. Experimental study on the effect of carbon nanofiber content on the durability of concrete[J]. Construction and Building Materials,2020,250:118891. doi: 10.1016/j.conbuildmat.2020.118891
    [10] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58. doi: 10.1038/354056a0
    [11] ALSHAGHEL A, PARVEEN S, RANA S, et al. Effect of multiscale reinforcement on the mechanical properties and microstructure of microcrystalline cellulose-carbon nanotube reinforced cementitious composites[J]. Composites Part B: Engineering,2018,149:122-134. doi: 10.1016/j.compositesb.2018.05.024
    [12] FENG L, XIE N, ZHONG J. Carbon nanofibers and their composites: A review of synthesizing, properties and applications[J]. Materials,2014,7(5):3919-3945. doi: 10.3390/ma7053919
    [13] LIU Q L, SUN W, JIANG H, et al. Effects of carbon nanotubes on mechanical and 2D-3D microstructure properties of cement mortar[J]. Journal of Wuhan University of Technology (Materials Science Edition),2014,29(3):513-517. doi: 10.1007/s11595-014-0950-3
    [14] ZHAO Y, LIU Y, SHI T, et al. Study of mechanical properties and early-stage deformation properties of graphene-modified cement-based materials[J]. Construction and Building Materials,2020,257:119498. doi: 10.1016/j.conbuildmat.2020.119498
    [15] LI G Y, WANG P M, ZHAO X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes[J]. Carbon,2004,43(6):1239-1245. doi: 10.1016/j.carbon.2004.12.017
    [16] YAZDANBAKHSH A, GRASLEY Z. The theoretical maximum achievable dispersion of nanoinclusions in cement paste[J]. Cement and Concrete Research,2012,42(6):798-804. doi: 10.1016/j.cemconres.2012.03.001
    [17] NOCHAIYA T, CHAIPANICH A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials[J]. Applied Surface Science,2010,257(6):1941-1945. doi: 10.1016/j.apsusc.2010.09.030
    [18] KONSTA-GDOUTOS M S, METAXA Z S, SHAH S P. Highly dispersed carbon nanotube reinforced cement based materials[J]. Cement and Concrete Research,2010,40(7):1052-1059. doi: 10.1016/j.cemconres.2010.02.015
    [19] 刘颐. 碳纳米管对水泥砂浆抗碳化与氯盐侵蚀的试验研究[D]. 深圳: 深圳大学, 2016.

    LIU Yi. Experimental research on the ability of anti-carbonization and chloride corrosion of cement mortar by CNTs[D]. Shenzhen: Shenzhen University, 2016(in Chinese).
    [20] WANG B M, LIU S, HAN Y, et al. Preparation and durability of cement-based composites doped with multi-walled carbon nanotubes[J]. Nanoscience and Nanotechnology Letters,2015,7(5):411-416. doi: 10.1166/nnl.2015.1979
    [21] HAN B, YANG Z, SHI X, et al. Transport properties of carbon-nanotube/cement composites[J]. Journal of Materials Engineering and Performance,2013,22(1):184-189. doi: 10.1007/s11665-012-0228-x
    [22] 赵晋津, 任书霞, 吕臣敬, 等. 碳纳米管对硅酸盐水泥耐腐蚀性的影响研究[J]. 石家庄铁道大学学报(自然科学版), 2013, 26(2):88-91.

    ZHAO Jinjin, REN Shuxia, LV Chenjing, et al. Research on anti-corrosion properties of portland cement doped with carbon nanotubes[J]. Journal of Shijiazhuang Tiedao University (Nature Science Edition),2013,26(2):88-91(in Chinese).
    [23] ALAFOGIANNI P, DALLA P T, TRAGAZIKIS I K, et al. Rapid chloride permeability test for durability study of carbon nanoreinforced mortar[M]. Bellingham: International Society for Optics and Photonics, 2015.
    [24] CAMACHO M D C, GALAO O, BAEZA F J, et al. Mechanical properties and durability of CNT cement composites[J]. Materials,2014,7(3):1640-1651. doi: 10.3390/ma7031640
    [25] 施韬, 李泽鑫, 李闪闪. 碳纳米管增强水泥基复合材料的自收缩及抗裂性能[J]. 复合材料学报, 2019, 36(6):1528-1535.

    SHI Tao, LI Zexin, LI Shanshan. Autogenous shrinkage and crack resistance of carbon nanotubes reinforced cement based composites[J]. Acta Materiae Compositae Sinica,2019,36(6):1528-1535(in Chinese).
    [26] SHI T, LI Z, GUO J, et al. Research progress on CNTs/CNFs-modified cement-based composites[J]. Construction and Building Materials,2019,202:290-307. doi: 10.1016/j.conbuildmat.2019.01.024
    [27] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [28] 杨绿峰, 陈俊武, 赵家琦, 等. 混凝土RCM试验分析的面均法研究[J]. 土木工程学报, 2020, 53(12):22-28.

    YANG Lufeng, CHEN Junwu, ZHAO Jiaqi, et al. Area average method for RCM test of concrete[J]. China Civil Engineering Journal,2020,53(12):22-28(in Chinese).
    [29] 韩学强, 詹树林, 徐强, 等. 干湿循环作用对混凝土抗氯离子渗透侵蚀性能的影响[J]. 复合材料学报, 2020, 37(1):198-204.

    HAN Xueqiang, ZHAN Shulin, XU Qiang, et al. Effect of dry-wet cycling on resistance of concrete to chloride ion permeation erosion[J]. Acta Materiae Compositae Sinica,2020,37(1):198-204(in Chinese).
    [30] THOMAS M D A, BAMFORTH P B. Modelling chloride diffusion in concrete: Effect of fly ash and slag[J]. Cement and Concrete Research,1999,29(4):487-495. doi: 10.1016/S0008-8846(98)00192-6
    [31] 冯奇, 刘光明, 巴恒静. 颗粒级配对水泥基材料有害孔隙率的影响[J]. 同济大学学报(自然科学版), 2004, 32(9):1168-1172. doi: 10.3321/j.issn:0253-374X.2004.09.011

    FENG Qi, LIU Guangming, BA Hengjing. Relation of grain grading and deleterious porosity of cement-based materials[J]. Journal of Tongji University (Natural Science),2004,32(9):1168-1172(in Chinese). doi: 10.3321/j.issn:0253-374X.2004.09.011
    [32] 刘巧玲. 碳纳米管增强水泥基复合材料多尺度性能及机理研究 [D]. 南京: 东南大学, 2015.

    LIU Qiaoling. Multi-scale properties and mechanism of carbon nanotubes/cement nanocomposites[D]. Nanjing: Southeast University, 2015(in Chinese).
    [33] LIU Y, SHI T, ZHAO Y J, et al. Autogenous shrinkage and crack resistance of carbon nanotubes reinforced cement-based materials[J]. International Journal of Concrete Structures and Materials,2020,14(1):525-534.
    [34] 牛荻涛, 何嘉琦, 傅强, 等. 碳纳米管对水泥基材料微观结构及耐久性能的影响[J]. 硅酸盐学报, 2020, 48(5):705-717.

    NIU Ditao, HE Jiaqi, FU Qiang, et al. Effect of carbon nanotubes on the microstructure and durability of cement-based materials[J]. Journal of the Chinese Ceramic Society,2020,48(5):705-717(in Chinese).
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  744
  • HTML全文浏览量:  370
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-03
  • 修回日期:  2021-09-28
  • 录用日期:  2021-09-29
  • 网络出版日期:  2021-10-15
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回