留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热压烧结制备碳纤维/氧化铝陶瓷复合材料的负介电行为

刘元会 石少杰 曹宇航 康帅 李润茁 夏世超 程传兵

刘元会, 石少杰, 曹宇航, 等. 热压烧结制备碳纤维/氧化铝陶瓷复合材料的负介电行为[J]. 复合材料学报, 2022, 39(8): 4085-4092. doi: 10.13801/j.cnki.fhclxb.20211012.003
引用本文: 刘元会, 石少杰, 曹宇航, 等. 热压烧结制备碳纤维/氧化铝陶瓷复合材料的负介电行为[J]. 复合材料学报, 2022, 39(8): 4085-4092. doi: 10.13801/j.cnki.fhclxb.20211012.003
LIU Yuanhui, SHI Shaojie, CAO Yuhang, et al. Negative permittivity behavior of carbon fiber/alumina ceramic composites prepared by hot-press sintering[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4085-4092. doi: 10.13801/j.cnki.fhclxb.20211012.003
Citation: LIU Yuanhui, SHI Shaojie, CAO Yuhang, et al. Negative permittivity behavior of carbon fiber/alumina ceramic composites prepared by hot-press sintering[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4085-4092. doi: 10.13801/j.cnki.fhclxb.20211012.003

热压烧结制备碳纤维/氧化铝陶瓷复合材料的负介电行为

doi: 10.13801/j.cnki.fhclxb.20211012.003
基金项目: 国家自然科学基金(51901109);齐鲁工业大学校级大学生创新创业训练计划项目(xj202010431095)
详细信息
    通讯作者:

    程传兵,博士,副教授,硕士生导师,研究方向为功能陶瓷材料和超材料 E-mail: cheng@qlu.edu.cn

  • 中图分类号: TB332

Negative permittivity behavior of carbon fiber/alumina ceramic composites prepared by hot-press sintering

  • 摘要: 超材料具有负参数的物理特性,其材料本征性质的负介电行为值得进一步探究,系统研究化学组成对其介电性能的影响规律,探究负介电行为的实现和调控机制。采用热压烧结工艺制备了碳纤维/氧化铝(CF/Al2O3)陶瓷复合材料,研究了不同CF含量对复合材料的微观形貌及电学性能的影响。通过调节复合材料中CF的含量,在1 kHz~10 MHz的频率范围内实现了负介电行为,同时复合材料的导电机制由跳跃电导转变为类金属电导。研究发现,增多的CF在复合材料中形成三维联通网络;复合材料的负介电常数由三维CF网络中自由电子的等离子体振荡引起;随着CF含量的增加,负介电常数的绝对值变大,相关频散特性符合Drude模型。

     

  • 图  1  不同碳纤维(CF)含量CF/Al2O3陶瓷复合材料的 XRD图谱

    Figure  1.  XRD patterns of CF/Al2O3 ceramic composites with different carbon fiber (CF) content

    图  2  不同CF含量CF/Al2O3陶瓷复合材料的SEM图像

    Figure  2.  SEM images of CF/Al2O3 ceramic composites with different CF content

    图  3  不同CF含量CF/Al2O3陶瓷复合材料的交流电导率曲线 ((a)~(c)) 和微观结构演变示意图 (d)

    Figure  3.  AC conductivity curves ((a)-(c)) and schematic diagram of microstructure evolution (d) for the CF/Al2O3 ceramic composites with different CF content

    图  4  不同CF含量CF/Al2O3复合材料阻抗频谱 ((a), (b))和阻抗模量 (c)

    Figure  4.  Impedance versus frequency curves ((a), (b)) and impedance modulus (c) for CF/Al2O3 composites with different CF content

    图  5  不同CF含量CF/Al2O3陶瓷复合材料的介电频谱:((a)~(c))介电实部;(d)介电虚部

    Figure  5.  Dielectric spectrum of CF/Al2O3 ceramic composites with different CF content: ((a)-(c)) Real permittivity; (d) Imaginary permittivity

  • [1] JIANG Q, XIANG C, LUO Y, et al. Textile structured metacomposites with tailorable negative permittivity under X and Ku band[J]. Materials & Design,2020,185:108270.
    [2] CHEN M, XIAO Z, LU X, et al. Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial[J]. Carbon,2020,159:273-282. doi: 10.1016/j.carbon.2019.12.050
    [3] ZHANG X G, JIANG W X, JIANG H L, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics,2020,3(3):165-171. doi: 10.1038/s41928-020-0380-5
    [4] 范润华. 负介材料: 超材料的分支[J]. 中国材料进展, 2019, 38(4):313-318.

    FAN R H. Negative mediated material: A branch of supermaterials[J]. Progress in Chinese Materials,2019,38(4):313-318(in Chinese).
    [5] 周济. "超材料": 超越材料性能的自然极限[J]. 四川大学学报(自然科学版), 2005, 42(2):15-16.

    ZHOU J. "Metamaterials": Beyond the natural limits of material performance[J]. Journal of Sichuan University (Natural Science Edition),2005,42(2):15-16(in Chinese).
    [6] CALAME J P, BATTAT J. Narrowband microwave dielectric resonance and negative permittivity behavior in hydrogen-fired Al2O3-CuO composites[J]. Journal of the American Ceramic Society,2006,89(12):3865-3867. doi: 10.1111/j.1551-2916.2006.01306.x
    [7] SHI Z C, FAN R H, ZHANG Z D, et al. Experimental and theoretical investigation on the high frequency dielectric properties of Ag/Al2O3 composites[J]. Applied Physics Letters,2011,99(3):032903. doi: 10.1063/1.3608156
    [8] SHI Z C, FAN R H, ZHANG Z D, et al. Random composites of nickel networks supported by porous alumina toward double negative materials[J]. Advanced Materials,2012,24(17):2349-2352. doi: 10.1002/adma.201200157
    [9] SHI Z C, FAN R H, YAN K L, et al. Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability[J]. Advanced Functional Materials,2013,23(33):4123-4132. doi: 10.1002/adfm.201202895
    [10] WANG X A, SHI Z C, CHEN M, et al. Tunable electromagnetic properties in Co/Al2O3 cermets prepared by wet chemical method[J]. Journal of the American Ceramic Society,2014,97(10):3223-3229. doi: 10.1111/jace.13113
    [11] TSUTAOKA T, KASAGI T, YAMAMOTO S, et al. Double negative electromagnetic property of granular composite materials in the microwave range[J]. Journal of Magne-tism and Magnetic Materials,2015,383:139-143. doi: 10.1016/j.jmmm.2014.10.103
    [12] TSUTAOKA T, KASAGI T, YAMAMOTO S, et al. Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold[J]. Applied Physics Letters,2013,102(18):509.
    [13] TSUTAOKA T, FUKUYAMA K, KINOSHITA H, et al. Nega-tive permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range[J]. Applied Physics Letters,2013,103(26):261906. doi: 10.1063/1.4858976
    [14] CHENG C, FAN R, WANG Z, et al. Tunable and weakly nega-tive permittivity in carbon/silicon nitride composites with different carbonizing temperatures[J]. Carbon,2017,125:103-112. doi: 10.1016/j.carbon.2017.09.037
    [15] CHENG C, FAN R, WANG Z, et al. Radio-frequency nega-tive permittivity in the graphene/silicon nitride compo-sites prepared by spark plasma sintering[J]. Journal of the American Ceramic Society,2018,101(4):1598-1606. doi: 10.1111/jace.15283
    [16] OGANISIAN K, STREK W. Observation of negative refraction in the graphene/ferrite composite[J]. Physica Status Solidi-Rapid Research Letters,2014,8(12):1011-1014. doi: 10.1002/pssr.201409435
    [17] GHOLIPUR R, KHORSHIDI Z, BAHARI A. Enhanced absorption performance of carbon nanostructure based metamaterials and tuning impedance matching behavior by an external AC electric field[J]. ACS Applied Materials & Interfaces,2017,9(14):12528-12539. doi: 10.1021/acsami.7b02270
    [18] NI J, ZHAN R, QIU J, et al. Multi-interfaced graphene aerogel/polydimethylsiloxane metacomposites with tunable electrical conductivity for enhanced electromagnetic interference shielding[J]. Journal of Materials Chemistry C,2020,8(34):11748-11759. doi: 10.1039/D0TC02278K
    [19] 闫丽丽, 乔秒生, 雷忆三, 等. 化学镀镍碳纤维/环氧树脂复合材料电磁屏蔽性能[J]. 复合材料学报, 2013, 30(2):44-49.

    YAN L L, QIAO M S, LEI Y S, et al. Electromagnetic shielding properties of chemical nickel-plated carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2013,30(2):44-49(in Chinese).
    [20] 陈文博, 肖鹏, 周伟, 等. 纳米SiC纤维改性短切碳纤维增强Si3N4陶瓷介电响应及吸波性能[J]. 复合材料学报, 2017, 34(11):2530-2536.

    CHEN W B, XIAO P, ZHOU W, et al. Nano SiC fiber modified short-cut carbon fiber enhances Si3N4 ceramic dielectric response and wave absorption performance[J]. Acta Materiae Compositae Sinica,2017,34(11):2530-2536(in Chinese).
    [21] CHENG C, WU Y, QU Y, et al. Radio-frequency negative permittivity of carbon nanotube/copper calcium titanate ceramic nanocomposites fabricated by spark plasma sintering[J]. Ceramics International,2020,46(2):2261-2267. doi: 10.1016/j.ceramint.2019.09.213
    [22] CHENG C, YAN K, FAN R, et al. Negative permittivity behavior in the carbon/silicon nitride composites prepared by impregnation-carbonization approach[J]. Carbon,2016,96:678-684. doi: 10.1016/j.carbon.2015.10.003
    [23] CHENG C, FAN R, REN Y, et al. Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites[J]. Nanoscale,2017,9(18):5779-5787. doi: 10.1039/C7NR01516J
    [24] SUN X, SHEN J, CHENG C, et al. Negative permittivity behavior in percolative molybdenum/alumina composites[J]. Ceramics International, 2019, 45(13): 16618-16624.
    [25] QU Y, WU Y, WU J, et al. Simultaneous epsilon-negative and munegative property of Ni/CaCu3Ti4O12 metacompo-sites at radio-frequency region[J]. Journal of Alloys and Compounds,2020,847:156526. doi: 10.1016/j.jallcom.2020.156526
    [26] CHENG C, JIANG Y, SUN X, et al. Tunable negative permittivity behavior and electromagnetic shielding perfor-mance of silver/silicon nitride metacomposites[J]. Composites Part A: Applied Science and Manufacturing,2020,130:105753. doi: 10.1016/j.compositesa.2019.105753
    [27] LUO H, QIU J. Carbon nanotube/polyolefin elastomer metacomposites with adjustable radio-frequency negative permittivity and negative permeability[J]. Advanced Electronic Materials, 2019, 5(6): 1900011.
    [28] 曹呈龙, 赵梓超, 丁圆, 等. 裂解碳/氧化铝陶瓷复合材料的制备与介电性能研究[J]. 陶瓷, 2020, 421(11): 16-20.

    CAO C L, ZHAO Z C, DING Y, et al. Preparation and dielectric properties of cracked carbon/alumina ceramic composites[J]. Ceramic, 2020, 421(11): 16-20(in Chinese).
    [29] NAN C W, SHEN Y, MA J. Physical properties of compo-sites near percolation[J]. Annual Review of Materials Research,2010,40(1):131-151. doi: 10.1146/annurev-matsci-070909-104529
    [30] SUN K, XIE P, WANG Z, et al. Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity[J]. Polymer,2017,125:50-57. doi: 10.1016/j.polymer.2017.07.083
    [31] FAN G, ZHAO Y, XIN J, et al. Negative permittivity in titanium nitride-alumina composite for functionalized structural ceramics[J]. Journal of the American Ceramic Society,2019,103(1):403-411.
    [32] XIE P, LI Y, HOU Q, et al. Tunneling-induced negative permittivity in Ni/MnO nanocomposites by a bio-gel derived strategy[J]. Journal of Materials Chemistry C,2020,8(9):3029-3039. doi: 10.1039/C9TC06378A
    [33] MA R, CHENG C, QU Y, et al. Tailorable negative permittivity of graphene-carbon nanotube/copper calcium titanate metacomposites[J]. Ceramics International,2021,47(7):9971-9978. doi: 10.1016/j.ceramint.2020.12.142
    [34] FAN G, WANG Z, SUN K, et al. Doped ceramics of indium oxides for negative permittivity materials in MHz-kHz frequency regions[J]. Journal of Materials Science & Technology,2021,61:125-131.
    [35] HOU C, FAN G, XIE X, et al. TiN/Al2O3 binary ceramics for negative permittivity metacomposites at kHz frequencies[J]. Journal of Alloys and Compounds,2021,855:157499. doi: 10.1016/j.jallcom.2020.157499
    [36] ZHU X, YANG J, DASTAN D, et al. Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss[J]. Composites Part A: Applied Science and Manufacturing,2019,125:105521. doi: 10.1016/j.compositesa.2019.105521
    [37] FENG Y, LI W L, HOU Y F, et al. Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape[J]. Journal of Materials Chemistry C,2015,3(6):1250-1260. doi: 10.1039/C4TC02183E
  • 加载中
图(5)
计量
  • 文章访问数:  1002
  • HTML全文浏览量:  399
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 修回日期:  2021-09-14
  • 录用日期:  2021-09-27
  • 网络出版日期:  2021-10-13
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回