留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BiOBr@CdS/聚氨酯-蚕丝蛋白纳米复合膜的制备及其可见光催化性能

蹇建 杨德兴 邝丹妮 袁正求 艾秋红 周虎

蹇建, 杨德兴, 邝丹妮, 等. BiOBr@CdS/聚氨酯-蚕丝蛋白纳米复合膜的制备及其可见光催化性能[J]. 复合材料学报, 2022, 39(8): 4037-4048. doi: 10.13801/j.cnki.fhclxb.20211012.002
引用本文: 蹇建, 杨德兴, 邝丹妮, 等. BiOBr@CdS/聚氨酯-蚕丝蛋白纳米复合膜的制备及其可见光催化性能[J]. 复合材料学报, 2022, 39(8): 4037-4048. doi: 10.13801/j.cnki.fhclxb.20211012.002
JIAN Jian, YANG Dexing, KUANG Danni, et al. Synthesis and visible light photocatalystic of BiOBr@CdS/polyurethane-silk fibroin nanocomposite films[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4037-4048. doi: 10.13801/j.cnki.fhclxb.20211012.002
Citation: JIAN Jian, YANG Dexing, KUANG Danni, et al. Synthesis and visible light photocatalystic of BiOBr@CdS/polyurethane-silk fibroin nanocomposite films[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4037-4048. doi: 10.13801/j.cnki.fhclxb.20211012.002

BiOBr@CdS/聚氨酯-蚕丝蛋白纳米复合膜的制备及其可见光催化性能

doi: 10.13801/j.cnki.fhclxb.20211012.002
基金项目: 国家自然科学基金(21776067);湖南省自然科学基金(2021JJ30239;2020JJ2014)
详细信息
    通讯作者:

    周虎,博士,教授,博士生导师,研究方向为多功能纳米复合膜材料、有机-无机杂化材料 E-mail: hnustchemzhou@163.com

  • 中图分类号: O643

Synthesis and visible light photocatalystic of BiOBr@CdS/polyurethane-silk fibroin nanocomposite films

  • 摘要: 粉末形态的纳米光催化剂在催化降解污染物过程中存在颗粒易团聚、与水体难分离导致二次污染等问题。本文采用共混-湿法相转化-原位合成法制备了系列BiOBr@CdS/聚氨酯-蚕丝蛋白(BiOBr@CdS/PU-SF)纳米复合膜材料,利用XRD、FTIR、SEM、XPS、紫外-可见漫反射光谱(UV-Vis DRS)和光致发光光谱(PL)等表征技术对其物相结构、微观形貌、元素价态和光学性能等进行表征分析。研究结果表明,BiOBr@CdS/PU-SF复合膜中BiOBr与CdS形成的半导体纳米复合物,不仅显著提升了单一半导体的可见光吸收能力,且有效抑制了光生载流子的复合。通过可见光照射下降解以盐酸四环素(TC)为模型的抗生素废水评价其光催化性能,其中Bi与Cd物质的量比为1:1时的(1:1)BiOBr@CdS/PU-SF复合膜对TC的去除率最高,为70.3%,分别是BiOBr/PU-SF和CdS/PU-SF复合膜的1.33倍和2.45倍。另外,该复合膜无需离心与过滤即可实现分离和回收,并且循环使用五次后仍然保持原降解率的80%以上。

     

  • 图  1  BiOBr@CdS/PU-SF纳米复合膜的制备过程

    Figure  1.  Preparation process of BiOBr@CdS/PU-SF nanocomposite films

    DMF—Dimethyl formamide

    图  2  PU与PU-SF复合膜的表面SEM图像:((a)~(c)) PU;((d)~(f)) PU-SF

    Figure  2.  Surface SEM images of PU and PU-SF composite films: ((a)-(c)) PU; ((d)-(f)) PU-SF

    图  3  PU ((a)~(c))、PU-SF ((d)~(f))、BiOBr/PU-SF ((g)~(i))、CdS/PU-SF ((j)~(l)) 和BiOBr@CdS/PU-SF ((m)~(o)) 复合膜的截面SEM图像

    Figure  3.  Cross-sectional SEM images of PU ((a)-(c)), PU-SF ((d)-(f)), BiOBr/PU-SF ((g)-(i)), CdS/PU-SF ((j)-(l)) and BiOBr@CdS/PU-SF ((m)-(o)) composite films

    图  4  PU-SF、BiOBr/PU-SF、CdS/PU-SF和BiOBr@CdS/PU-SF复合膜的XRD图谱

    Figure  4.  XRD patterns of PU-SF, BiOBr/PU-SF, CdS/PU-SF and BiOBr@CdS/PU-SF composite films

    图  5  PU-SF、BiOBr/PU-SF、CdS/PU-SF和BiOBr@CdS/PU-SF复合膜的FTIR图谱

    Figure  5.  FTIR spectra of PU-SF, BiOBr/PU-SF, CdS/PU-SF and BiOBr@CdS/PU-SF composite films

    图  6  BiOBr@CdS/PU-SF复合膜的XPS图谱:(a) 全谱;(b) Bi4f ;(c) Br3d;(d) C1s;(e) O1s;(f) Cd3d

    Figure  6.  XPS spectra of BiOBr@CdS/PU-SF composite film: (a) Full spectrum; (b) Bi4f; (c) Br3d; (d) C1s; (e) O1s; (f) Cd3d

    图  7  (a) PU-SF、BiOBr/PU-SF、CdS/PU-SF和BiOBr@CdS/PU-SF复合膜的紫外-可见漫反射光谱(UV-Vis DRS)图谱;(b) BiOBr/PU-SF的(αhν)2~曲线和CdS/PU-SF的(αhν)1/2~曲线

    Figure  7.  (a) UV-Vis diffuse reflectance (UV-Vis DRS) spectra of PU-SF, BiOBr/PU-SF, CdS/PU-SF and BiOBr@CdS/PU-SF composite films; (b) (αhν)2- curve of BiOBr/PU-SF and (αhν)1/2- curve of CdS/PU-SF sample

    图  8  BiOBr/PU-SF、CdS/PU-SF和BiOBr@CdS/PU-SF复合膜的荧光光谱(PL)

    Figure  8.  Photoluminescence spectra (PL) of BiOBr/PU-SF, CdS/PU-SF and BiOBr@CdS/PU-SF composite films

    图  9  BiOBr@CdS/PU-SF复合膜可见光降解盐酸四环素(TC)曲线 (a) 及其动力学拟合曲线 (b)

    Figure  9.  Photocatalytic degradation of tetracycline hydrochloride (TC) under visible light illumination in the presence of BiOBr@CdS/PU-SF composite films (a) and kinetic linear simulation curves (b)

    C—Final concentration of TC; C0—Initial concentration of TC

    图  10  BiOBr@CdS/PU-SF复合膜循环降解TC曲线 (a) 及使用前后XRD图谱 (b)

    Figure  10.  Cycling runs of TC photocatalytic degradation in the presence of BiOBr@CdS/PU-SF composite film (a) and XRD patterns of the BiOBr@CdS/PU-SF composite film before and after the cycling runs experiment (b)

    图  11  加入不同捕获剂后BiOBr@CdS/PU-SF复合膜在可见光下对TC的降解率

    Figure  11.  Various degradation values of BiOBr@CdS/PU-SF composite film for TC degradation after introduction of different scavengers

    IPA—Isopropanol; TEOA—Triethanolamine; TEMPO—4-Hydroxy-2, 2, 6, 6-tetramethylpiperidine-1-O radical

    图  12  可见光照射下BiOBr@CdS/PU-SF复合膜降解TC的光催化机制示意图

    Figure  12.  Proposed mechanism for TC photodegradation under visible light irradiation over an BiOBr@CdS/PU-SF composite film

    表  1  不同BiOBr@CdS/聚氨酯-蚕丝蛋白(BiOBr@CdS/PU-SF)纳米复合膜的组成

    Table  1.   Compose of different BiOBr@CdS/polyurethane-silk fibroin (BiOBr@CdS/PU-SF) nanocomposite films

    Number Molar ratio of Bi and Cd Name
    1 4:1 (4:1)BiOBr@CdS/PU-SF
    2 3:2 (3:2)BiOBr@CdS/PU-SF
    3 1:1 (1:1)BiOBr@CdS/PU-SF
    4 2:3 (2:3)BiOBr@CdS/PU-SF
    下载: 导出CSV
  • [1] WANG Q, YANG Z. Industrial water pollution, water envi-ronment treatment, and health risks in China[J]. Environmental Pollution,2016,218:358-365.
    [2] 罗灵芝, 俞俊, 罗豪, 等. 带状γ-Fe2O3/ZnO异质结光催化剂光催化降解四环素[J]. 复合材料学报, 2021, 38(5):1535-1542.

    LUO L L, YU J, LUO H, et al. Photocatalytic degradation of tetracycline by band-like γ-Fe2O3/ZnO heterojunction photocatalyst[J]. Acta Materiae Compositae Sinica,2021,38(5):1535-1542(in Chinese).
    [3] BALACHANDRAN S, PRAKASH N, THIRUMALAI K, et al. Facile construction of heterostructured BiVO4-ZnO and its dual application of greater solar photocatalytic activity and self-cleaning property[J]. Industrial & Engineering Che-mistry Research,2014,53(20):8346-8356.
    [4] FENG Y, LI L, LI J, et al. Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene[J]. Journal of Hazardous Materials,2011,192(2):538-544. doi: 10.1016/j.jhazmat.2011.05.048
    [5] JIA H, ZHANG B, HE W, et al. Mechanistic insights into photoinduced charge carriers dynamics of BiOBr/CdS nanosheet heterojunctions for photovoltaic application[J]. Nanoscale, 2017, 9(9): 3180-3187.
    [6] PENG X, WANG S, ZHANG X, et al. Ag@AgCl embedded on cellulose film: A stable, highly efficient and easily recyclable photocatalyst[J]. Cellulose,2017,24(11):4683-4689. doi: 10.1007/s10570-017-1438-z
    [7] 黄妙良, 杨媛媛, 申玥, 等. 多孔材料负载TiO2光催化材料的研究进展[J]. 材料导报, 2009, 23(17): 110-113.

    HUANG M L, YANG Y Y, SHEN Y, et al. Research progress in porous materials supported TiO2 photocatalysts[J]. Materials Reports, 2009, 23(17): 110-113(in Chinese).
    [8] ZHANG Y, SHAN G, DONG F, et al. Glass fiber supported BiOI thin-film fixed-bed photocatalytic reactor for water decontamination under solar light irradiation[J]. Journal of Environmental Sciences,2019,80:277-286. doi: 10.1016/j.jes.2019.01.004
    [9] DU M, DU Y, FENG Y, et al. Advanced photocatalytic performance of novel BiOBr/BiOI/cellulose composites for the removal of organic pollutant[J]. Cellulose,2019,26(9):5543-5557. doi: 10.1007/s10570-019-02474-1
    [10] 刘丽. 聚氨酯基纳米复合材料的制备和性能研究[D]. 上海: 上海交通大学, 2010.

    LIU L. Preparation and properties of polyurethane based nanocomposites[D]. Shanghai: Shanghai Jiaotong University, 2010(in Chinese).
    [11] YANG H J, XU H Y, ZHU G C, et al. Composite membranes of native silk fibroin powder and biomedical polyurethane for controlled release of heparin[J]. Journal of Engineering in Medicine,2010,225(4):421-433.
    [12] ZHOU H, WANG X, WANG T, et al. In situ decoration of Ag@AgCl nanoparticles on polyurethane/silk fibroin composite porous films for photocatalytic and antibacterial applications[J]. European Polymer Journal,2019,118:153-162. doi: 10.1016/j.eurpolymj.2019.05.058
    [13] NAMVAR-MAHBOUB M, PAKIZEH M. Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified SiO2 support for organic solvent nanofiltration[J]. Separation and Purification Technology,2013,119:35-45. doi: 10.1016/j.seppur.2013.09.003
    [14] YAN S, YANG J, LI Y, et al. One-step synthesis of ZnS/BiOBr photocatalyst to enhance photodegradation of tetracycline under full spectral irradiation[J]. Materials Letters,2020,276:128232. doi: 10.1016/j.matlet.2020.128232
    [15] LV T, LI D, HONG Y, et al. Facile synthesis of CdS/Bi4V2O11 photocatalysts with enhanced visible-light photocatalytic activity for degradation of organic pollutants in water[J]. Dalton Transactions,2017,46(37):12675-12682. doi: 10.1039/C7DT02151H
    [16] TRAN V H T, LEE B K. Novel fabrication of a robust superhydrophobic PU@ZnO@Fe3O4@SA sponge and its application in oil-water separations[J]. Scientific Reports,2017,7(1):17520. doi: 10.1038/s41598-017-17761-9
    [17] 陶咏真, 鄢芸, 徐卫林, 等. 丝素蛋白与聚氨酯共混膜的制备及结构和性能[J]. 高分子学报, 2010, (1):27-32.

    TAO Y Z, YAN Y, XU W L, et al. Preparation, structure and properties of blended films of polyurethane and silk fibroin[J]. Acta Polymerica Sinica,2010,(1):27-32(in Chinese).
    [18] GUO Y, HUANG H, HE Y, et al. In situ crystallization for fabrication of a core-satellite structured BiOBr-CdS heterostructure with excellent visible-light-responsive photoreactivity[J]. Nanoscale,2015,7(27):11702-11711.
    [19] LIU Z, WU B, ZHU Y, et al. Cadmium sulphide quantum dots sensitized hierarchical bismuth oxybromide microsphere with highly efficient photocatalytic activity[J]. Journal of Colloid and Interface Science,2013,392:337-342.
    [20] CAO X, HABIBI Y, LUCIA L A. One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites[J]. Journal of Materials Chemistry,2009,19(38):7137-7145.
    [21] EDERER J, JANOS P, ECORCHARD P, et al. Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation[J]. RSC Advances,2017,7(21):12464-12473. doi: 10.1039/C6RA28745J
    [22] LI H, HU T, DU N, et al. Wavelength-dependent differences in photocatalytic performance between BiOBr nanosheets with dominant exposed (001) and (010) facets[J]. Applied Catalysis B: Environmental,2016,187:342-349.
    [23] DU M, DU Y, FENG Y, et al. Facile preparation of BiOBr/cellulose composites by in situ synthesis and its enhanced photocatalytic activity under visible-light[J]. Carbohydrate Polymers,2018,195:393-400.
    [24] SIONKOWSKA A, PLANECKA A. The influence of UV radiation on silk fibroin[J]. Polymer Degradation and Stability,2011,96(4):523-528. doi: 10.1016/j.polymdegradstab.2011.01.001
    [25] 高晓明, 代源, 费娇, 等. n-p异质结型CdS/BiOBr复合光催化剂的制备及性能[J]. 高等学校化学学报, 2017, 38(7):1249-1256. doi: 10.7503/cjcu20160837

    GAO X M, DAI Y, FEI J, et al. Synthesis of n-p heterojunction BiOBr/CdS composites with enhanced photocatalytic properties[J]. Chemical Journal of Chinese Universities,2017,38(7):1249-1256(in Chinese). doi: 10.7503/cjcu20160837
    [26] CUI H, ZHOU Y, MEI J, et al. Synthesis of CdS/BiOBr nanosheets composites with efficient visible-light photocatalytic activity[J]. Journal of Physics and Chemistry of Solids,2018,112:80-87. doi: 10.1016/j.jpcs.2017.09.011
    [27] PANMAND R P, SETHI Y A, DEOKAR R S, et al. In situ fabrication of highly crystalline CdS decorated Bi2S3 nanowires (nano-heterostructure) for visible light photocatalyst application[J]. RSC Advances,2016,6(28):23508-23517. doi: 10.1039/C6RA01488G
    [28] YOON H J, CHOI Y I, JANG E S, et al. Graphene, charcoal, ZnO, and ZnS/BiOX (X=Cl, Br, and I) hybrid microspheres for photocatalytic simulated real mixed dye treatments[J]. Journal of Industrial and Engineering Chemistry,2015,32:137-152. doi: 10.1016/j.jiec.2015.08.010
    [29] CUI W, AN W, LIU L, et al. Synthesis of CdS/BiOBr compo-site and its enhanced photocatalytic degradation for Rho-damine B[J]. Applied Surface Science,2014,319:298-305. doi: 10.1016/j.apsusc.2014.05.179
    [30] BAO Y, CHEN K. Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: Synthesis, characterization, visible light photocatalytic activity and mecha-nism[J]. Applied Surface Science,2018,437:51-61. doi: 10.1016/j.apsusc.2017.12.075
    [31] CHEN F, YU C, WEI L, et al. Fabrication and characterization of ZnTiO3/Zn2Ti3O8/ZnO ternary photocatalyst for synergetic removal of aqueous organic pollutants and Cr(VI) ions[J]. Science of the Total Environment,2020,706:136026. doi: 10.1016/j.scitotenv.2019.136026
    [32] ANISE A, AZIZ H Y. Ternary g-C3N4/ZnO/AgCl nanocomposites: Synergistic collaboration on visible-light-driven activity in photodegradation of an organic pollutant[J]. Applied Surfurce Science,2015,358:261-269. doi: 10.1016/j.apsusc.2015.08.149
    [33] 但智钢, 肖经浩, 姚旭. Bi2MoO6/WO3复合光催化材料的合成及其可见光催化性能[J]. 复合材料学报, 2022, 39(4): 1610-1616.

    DAN Z G, XIAO J H, YAO X. Synthesis and visible light photocatalytic properties of Bi2MoO6/WO3 composite photocatalysts[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1610-1616(in Chinese).
    [34] FU S, YU W, LIU X, et al. A novel 0D/2D WS2/BiOBr heterostructure with rich oxygen vacancies for enhanced broad-spectrum photocatalytic performance[J]. Journal of Colloid and Interface Science,2020,569:150-163. doi: 10.1016/j.jcis.2020.02.077
    [35] WANG S, ZHU B, LIU M, et al. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity[J]. Applied Catalysis B: Environmental,2019,243:19-26. doi: 10.1016/j.apcatb.2018.10.019
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  960
  • HTML全文浏览量:  357
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-27
  • 修回日期:  2021-08-31
  • 录用日期:  2021-09-13
  • 网络出版日期:  2021-10-12
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回