留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺钯/镍对超级电容器碳纳米管电极材料电化学性能的影响

梁志奇 侯从聪 常春蕊 张志明 安立宝

梁志奇, 侯从聪, 常春蕊, 等. 掺钯/镍对超级电容器碳纳米管电极材料电化学性能的影响[J]. 复合材料学报, 2022, 39(8): 3906-3914. doi: 10.13801/j.cnki.fhclxb.20210930.002
引用本文: 梁志奇, 侯从聪, 常春蕊, 等. 掺钯/镍对超级电容器碳纳米管电极材料电化学性能的影响[J]. 复合材料学报, 2022, 39(8): 3906-3914. doi: 10.13801/j.cnki.fhclxb.20210930.002
LIANG Zhiqi, HOU Congcong, CHANG Chunrui, et al. Effects of palladium/nickel doping on the electrochemical properties of carbon nanotubes electrode materials for supercapacitors[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3906-3914. doi: 10.13801/j.cnki.fhclxb.20210930.002
Citation: LIANG Zhiqi, HOU Congcong, CHANG Chunrui, et al. Effects of palladium/nickel doping on the electrochemical properties of carbon nanotubes electrode materials for supercapacitors[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3906-3914. doi: 10.13801/j.cnki.fhclxb.20210930.002

掺钯/镍对超级电容器碳纳米管电极材料电化学性能的影响

doi: 10.13801/j.cnki.fhclxb.20210930.002
基金项目: 国家自然科学基金(51472074);河北省引进海外高层次人才“百人计划”项目(E2012100005)
详细信息
    通讯作者:

    常春蕊,博士,副教授,硕士生导师,研究方向为碳纳米管的分散与自组装行为 E-mail: changchunrui@ncst.edu.cn;

    安立宝,博士,教授,硕士生导师,研究方向为微纳制造技术、碳纳米功能材料特性及应用 E-mail: lan@ncst.edu.cn

  • 中图分类号: TB34

Effects of palladium/nickel doping on the electrochemical properties of carbon nanotubes electrode materials for supercapacitors

  • 摘要: 面向将具有高长径比、高比表面积和高电导率的碳纳米管用于超级电容器领域,并改善其与金属电极之间存在的接触电阻。应用无电沉积法对碳纳米管进行过渡金属钯的掺杂,以金属有机骨架为媒介对碳纳米管进行过渡金属镍的掺杂。分别将掺杂钯、掺杂镍的碳纳米管与聚乙烯醇复合,修饰玻碳电极和碳布,并将修饰的碳布作为电极材料组装成超级电容器。分别对所修饰玻碳电极与超级电容器进行循环伏安和交流阻抗测试。掺钯与掺镍碳纳米管修饰玻碳电极的比电容分别为9.89 F/g和5.99 F/g,掺钯与掺镍碳纳米管修饰碳布组装超级电容器的比电容分别为175.77 mF/g和61.92 mF/g。可见掺钯降低碳纳米管修饰玻碳电极和超级电容器内阻、提高电化学性能的效果优于掺镍,这为掺杂碳纳米管在超级电容器等储能领域的应用起到借鉴作用。

     

  • 图  1  掺杂镍、钯碳纳米管(CNTs)的制备及超级电容器组装

    Figure  1.  Preparation of Ni- and Pa-doped carbon nanotubes (CNTs) and assembly of supercapacitors

    MOF—Metal organic framework

    图  2  掺杂CNTs-聚乙烯醇/碳布(CNTs-PVA/CC)超级电容器的组装:(a) 结构示意图;(b) 实物图

    Figure  2.  Assembly of doped CNTs-polyvinyl alcohol/carbon cloth (CNTs-PVA/CC) supercapacitor: (a) Schematic diagram; (b) Physical diagram

    图  3  修饰玻碳电极(GCEs) (a) 与超级电容器 (b) 的电化学测试

    Figure  3.  Electrochemical tests of modified glassy carbon electrodes (GCEs) (a) and supercapacitor (b)

    图  4  电化学极化与浓差极化共存时交流阻抗的Nyquist图

    Figure  4.  Nyquist plot of electrochemical impedance under the coexistence of electrochemical polarization and concentration polarization

    RΩ—Inherent resistance of carrier electrode; 2Rct—Charge transfer resistance of the modified material

    图  5  Ni-CNTs与Pd-CNTs的SEM图像 ((a), (b)) 和TEM图像 ((c), (d))

    Figure  5.  SEM images ((a), (b)) and TEM images ((c), (d)) of Ni-CNTs and Pd-CNTs

    图  6  循环伏安(CV)对比图:(a) 不同扫描速率下酸处理的CNTs-PVA/GCE;(b) 不同含量酸处理的CNTs-PVA/GCE;(c) 不同处理阶段的CNTs-PVA/GCE

    Figure  6.  Comparison of cyclic voltammetry (CV): (a) Acid-treated CNTs-PVA/GCE under different scanning rates; (b) CNTs-PVA/GCE with different content of acid-treated; (c) CNTs-PVA/GCE at different treatment stages

    图  7  不同处理阶段CNTs修饰GCE的交流阻抗谱Nyquist对比

    Figure  7.  Alternating current (AC) impedance spectra of CNTs modified GCE at different treatment stages

    图  8  Pd-CNTs-PVA/CC、Ni-CNTs-PVA/CC、CNTs-PVA/CC和碳布组装超级电容器的循环伏安对比

    Figure  8.  Cyclic voltammetric curves of supercapacitors assembled by Pd-CNTs-PVA/CC, Ni-CNTs-PVA/CC, CNTs-PVA/CC and CC

    图  9  Pd-CNTs-PVA/CC、Ni-CNTs-PVA/CC、CNTs-PVA/CC和碳布组装超级电容器的交流阻抗谱Nyquist对比

    Figure  9.  Alternating current impedance spectra of supercapacitors assembled by Pd-CNTs-PVA/CC, Ni-CNTs-PVA/CC, CNTs-PVA/CC and CC

    表  1  不同处理阶段CNTs-PVA/GCE超级电容器的比电容

    Table  1.   Specific capacitance of CNTs-PVA/GCE supercapacitors at different treatment stages

    Working electrodeArea of CV curve/(A·V−1)Specific capacitance/(F·g−1)
    PVA/GCE2.0×10−50.56
    GCE2.4×10−50.67
    CNTs-PVA/GCE1.5×10−44.26
    Ni-CNTs-PVA/GCE2.1×10−45.99
    Pd-CNTs-PVA/GCE3.2×10−49.89
    下载: 导出CSV

    表  2  组装CNTs-PVA/CC超级电容器的比电容

    Table  2.   Specific capacitance of assembled CNTs-PVA/CC supercapacitors

    Electrodes for assembling supercapacitorsArea of CV curve/(A·V−1)Specific capacitance/(mF·g−1)
    CC3.51×10−513.50
    CNTs-PVA/CC2.55×10−498.08
    Ni-CNTs-PVA/CC1.61×10−461.92
    Pd-CNTs-PVA/CC4.57×10−4175.77
    下载: 导出CSV
  • [1] VARSHNEY K. Carbon nanotubes: A review on synthesis, properties and applications[J]. International Journal of Engineering Research and General Science,2014,2(4):660-677.
    [2] WAN L, SHAMSAEI E, EASTON C D, et al. ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor[J]. Carbon,2017,121:330-336. doi: 10.1016/j.carbon.2017.06.017
    [3] LEE S E, JEE S S, PARK H, et al. Large reduction in electri-cal contact resistance of flexible carbon nanotube/silicone rubber composites by trifluoroacetic acid treatment[J]. Composites Science and Technology,2017,143:98-105. doi: 10.1016/j.compscitech.2017.03.004
    [4] JANG I, JOO H G, JANG Y H. Effects of carbon nanotubes on electrical contact resistance of a conductive velcro system under low frequency vibration[J]. Tribology International,2016,104:45-56. doi: 10.1016/j.triboint.2016.08.019
    [5] 孙蒙蒙, 常春蕊, 张志明, 等 . 掺钯碳纳米管的制备及电接触性能[J]. 高等学校化学学报, 2019 , 40(1): 11-17.

    SUN Mengmeng, CHANG Chunrui, ZHANG Zhiming, et al. Preparation and electrical contact properties of palladium-doped multi-walled carbon nanotubes[J]. Chemical Jour-nal of Chinese Universities, 2019, 40(1): 11-17(in Chinese).
    [6] DONG S, LI T T, ZHANG Z M, et al. Improving electrical contact properties of carbon nanotubes by Co doping using metal-organic framework as template[J]. Materials Letters,2019,253:420-423. doi: 10.1016/j.matlet.2019.07.130
    [7] BUFFA A, MANDLER D. Adsorption and detection of organic pollutants by fixed bed carbon nanotube electrochemical membrane[J]. Chemical Engineering Journal,2019,359:130-137. doi: 10.1016/j.cej.2018.11.069
    [8] HADI M, AHMADVAND E, EHSANI A. Electroanalytical sensing of piperazine at carbon nanotubes/nafion compo-site-modified glassy carbon and screen-printed carbon electrodes in human plasma[J]. Journal of Analytical Chemistry,2020,75(2):238-245. doi: 10.1134/S1061934820020069
    [9] CYMANN A, SAWCZAK M, RYL J, et al. Capacitance enhancement by incorporation of functionalised carbon nanotubes into poly(3, 4-ethylenedioxythiophene)/graphene oxide composites[J]. Materials,2020,13(10):2419. doi: 10.3390/ma13102419
    [10] 贺全国, 梁静, 李广利, 等. 纳米Fe3O4-还原氧化石墨烯复合修饰玻碳电极的制备及电化学检测多巴胺[J]. 复合材料学报, 2018, 35(9):2542-2550.

    HE Quanguo, LIANG Jing, LI Guangli, et al. Fabrication of nano Fe3O4-reduced graphene oxide composite modified glassy carbon electrode and its application for the deter-mination of dopamine[J]. Acta Materiae Compositae Sinica,2018,35(9):2542-2550(in Chinese).
    [11] 刘斌, 许春莉, 王许云. 纳米Fe2O3-还原氧化石墨烯复合材料的制备及对双酚A的检测[J]. 复合材料学报, 2020, 37(1):182-190.

    LIU Bin, XU Chunli, WANG Xuyun. Preparation of nano Fe2O3-reduced graphene oxide composite and its deter-mination of bisphenol A[J]. Acta Materiae Compositae Sinica,2020,37(1):182-190(in Chinese).
    [12] JAVED M S, HUSSAIN S, ASIM S, et al. Construction of binder-free hierarchical mesoporous 3D Co-Mo-O flowers assembled by nanosheets for aqueous symmetrical 1.2 V supercapacitor in basic electrolyte[J]. Electrochimica Acta,2019,330:135201.
    [13] OKHAY O, TKACH A, GALLO M J H, et al. Energy storage of supercapacitor electrodes on carbon cloth enhanced by graphene oxide aerogel reducing conditions[J]. Journal of Energy Storage,2020,32:101839. doi: 10.1016/j.est.2020.101839
    [14] PIFFERI V, FACCHINETTI G, VILLA A, et al. Electrocataly-tic activity of multiwalled carbon nanotubes decorated by silver nanoparticles for the detection of halothane[J]. Catalysis Today,2015,249:265-269. doi: 10.1016/j.cattod.2014.10.006
    [15] LIU Y Z, LI G R, GUO Y, et al. Flexible and binder-free hierarchical porous carbon film for supercapacitor electrodes derived from MOFs/CNTs[J]. ACS Applied Materials & Interfaces,2017,9(16):14043-14050.
    [16] LIANG J S, SU S J, XU F, et al. Electrospun fibrous electrodes with tunable microstructure made of polyaniline/multi-walled carbon nanotube suspension for all-solid-state supercapacitors[J]. Materials Science and Engineering: B,2016,211:61-66. doi: 10.1016/j.mseb.2016.04.014
    [17] MOZAFARI V, PARSA J B. Electrochemical synthesis of Pd supported on PANI-MWCNTs-SnO2 nanocomposite as a novel catalyst towards ethanol oxidation in alkaline media[J]. Synthetic Metals,2020,259:116214. doi: 10.1016/j.synthmet.2019.116214
    [18] SHA C H, CHENG J P, MAO H Y, et al. Metal ions addition as interfacial mediators toward improving the electroche-mical performance of PANI-rGO aerogels[J]. Electrochimica Acta,2018,288:91-100. doi: 10.1016/j.electacta.2018.09.001
    [19] WANG Y, LIN J, CHANG Z, et al. Electrodeposited nanoflakes of RuOxnH2O on three-dimensional graphene for flexible supercapacitors[J]. Journal of Inorganic Materials,2019,34(4):455-460. doi: 10.15541/jim20180490
    [20] KONGKAEW S, KANATHARANA P, THAVARUNGKUL P, et al. Studying the preparation, electrochemical performance testing, comparison and application of a cost-effective flexible graphene working electrode[J]. Journal of Colloid and Interface Science,2021,583:487-498. doi: 10.1016/j.jcis.2020.08.121
    [21] YAN J, WEI T, SHAO B, et al. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance[J]. Carbon,2010,48(2):487-493. doi: 10.1016/j.carbon.2009.09.066
    [22] ELGRISHI N, ROUNTREE K J, MCCARTHY B D, et al. A practical beginner's guide to cyclic voltammetry[J]. Jour-nal of Chemical Education,2018,95(2):197-206. doi: 10.1021/acs.jchemed.7b00361
    [23] CHEN J, WANG J Q, HAN E H, et al. AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution[J]. Electrochimica Acta,2007,52(9):3299-3309. doi: 10.1016/j.electacta.2006.10.007
    [24] CHANG B Y, PARK S M. Electrochemical impedance spectroscopy[J]. Annual Review of Analytical Chemistry,2010,3:207-229. doi: 10.1146/annurev.anchem.012809.102211
    [25] NARA H, YOKOSHIMA T, OSAKA T. Technology of electrochemical impedance spectroscopy for an energy-sustainable society[J]. Current Opinion in Electrochemistry,2020,20:66-77. doi: 10.1016/j.coelec.2020.02.026
    [26] SHIMIZU K, LASIA A, BOILY J F. Electrochemical impe-dance study of the hematite/water interface[J]. Langmuir,2012,28(20):7914-7920. doi: 10.1021/la300829c
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  942
  • HTML全文浏览量:  588
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-21
  • 修回日期:  2021-09-06
  • 录用日期:  2021-09-24
  • 网络出版日期:  2021-10-05
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回