留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质基多级孔活性炭-聚苯胺复合材料的合成及其电化学储能性能

韦会鸽 彭紫芳 陈安利 李桂星 崔大鹏 王晖

韦会鸽, 彭紫芳, 陈安利, 等. 生物质基多级孔活性炭-聚苯胺复合材料的合成及其电化学储能性能[J]. 复合材料学报, 2022, 39(8): 4028-4036. doi: 10.13801/j.cnki.fhclxb.20210928.005
引用本文: 韦会鸽, 彭紫芳, 陈安利, 等. 生物质基多级孔活性炭-聚苯胺复合材料的合成及其电化学储能性能[J]. 复合材料学报, 2022, 39(8): 4028-4036. doi: 10.13801/j.cnki.fhclxb.20210928.005
WEI Huige, PENG Zifang, CHEN Anli, et al. Synthesis and electrochemical energy storage performance of biomass-based porous hierarchical activated carbon-polyaniline composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4028-4036. doi: 10.13801/j.cnki.fhclxb.20210928.005
Citation: WEI Huige, PENG Zifang, CHEN Anli, et al. Synthesis and electrochemical energy storage performance of biomass-based porous hierarchical activated carbon-polyaniline composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4028-4036. doi: 10.13801/j.cnki.fhclxb.20210928.005

生物质基多级孔活性炭-聚苯胺复合材料的合成及其电化学储能性能

doi: 10.13801/j.cnki.fhclxb.20210928.005
基金项目: 国家自然科学基金(51703162);天津市青年人才托举(TJSQNTJ-2018-03)
详细信息
    通讯作者:

    韦会鸽,博士,副教授,博士生导师,研究方向为智能高分子复合材料及器件 E-mail: huigewei@tust.edu.cn

  • 中图分类号: TB332

Synthesis and electrochemical energy storage performance of biomass-based porous hierarchical activated carbon-polyaniline composites

  • 摘要: 为制备高性能、低成本的储能器件,本文通过简单的一步原位化学聚合的方法制备了生物质基多级孔活性炭-聚苯胺复合材料(HAC-PANI),并探讨了其在超级电容器(SCs)及锌离子混合超级电容器(ZHSCs)领域的应用。研究结果表明,复合材料中HAC的分级多孔结构和高的比表面积为PANI提供了生长位点,有效减少了PANI的团聚现象,并能促进电化学储能过程中电解质离子的传输,降低界面电荷传递电阻。当HAC与苯胺单体(AN)的质量比为1∶2时,PANI纳米颗粒均匀生长在HAC基底上,所得复合电极材料(HAC-2PANI)的电化学储能性能达到最佳,在三电极体系下质量比电容高达415.6 F·g−1(@1 A·g−1)。二电极体系下,基于HAC-2PANI的全固态超级电容器(s-HAC-PANI-SC)质量比电容为217.4 F·g−1(@1 A·g−1)、能量密度为26.5 W·h·kg−1、功率密度为1875.0 W·kg−1。由于PANI中赝电容的引入,以HAC-2PANI为阴极、Zn箔为阳极所构建的锌离子混合超级电容器(HAC-PANI-ZHSC)在0.2 A·g−1的电流密度下呈现出高的比容量(91.8 mA·h·g−1)、能量密度(64.3 W·h·kg−1)和功率密度(140.0 W·kg−1),并具有良好的倍率性能和循环稳定性,表明了生物质基活性炭复合材料在高性能、低成本电化学储能器件中潜在的应用前景。

     

  • 图  1  生物质基多级孔活性炭-聚苯胺(HAC-PANI)复合材料的制备示意图

    Figure  1.  Schematic preparation of hierarchical activated carbon-polyaniline (HAC-PANI) composites

    APS—Ammonium persulphate; AN—Aniline

    图  2  低倍率及高倍率SEM图像:(a) HAC;(b) PANI;(c) HAC-0.5PANI;(d) HAC-1PANI;(e) HAC-2PANI;(f) HAC-3PANI;HAC-2PANI的低倍率 (g) 及高倍率 (h) TEM图像

    Figure  2.  Lower and higher-magnification SEM images: (a) HAC; (b) PANI; (c) HAC-0.5PANI; (d) HAC-1PANI; (e) HAC-2PANI; (f) HAC-3PANI; Lower (g) and higher-magnification (h) TEM images of HAC-2PANI

    图  3  HAC和HAC-2PANI的氮气吸附-解吸附曲线 (a)、孔径分布图 (b)、XRD图谱 (c)、Raman图谱 (d)、XPS能谱图 (e) 及HAC-2PANI的高分辨率N1s图谱 (f)

    Figure  3.  Nitrogen adsorption-desorption curves (a), pore size distribution (b), XRD pattern (c), Raman spectra (d), XPS spectra (e) of HAC and HAC-2PANI and high resolution N1s spectrum of HAC-2PANI (f)

    图  4  不同质量比HAC-PANI三电极体系电化学性能:(a) CV曲线;(b) GCD曲线; (c) EIS曲线;(d) HAC-2PANI在不同扫描速率下的CV曲线;(e) HAC-2PANI在20 mV·s−1下的电容贡献和扩散控制贡献;(f) HAC-2PANI在不同扫描速率下电容贡献和扩散控制的贡献比;(g) HAC-2PANI在不同电流密度下的GCD曲线;(h) HAC-2PANI的倍率性能;(i) HAC-2PANI的循环稳定性能

    Figure  4.  Electrochemical performances of different mass ratio HAC-PANI under the three-electrode configuration: (a) CV curves; (b) GCD curves; (c) EIS spectra; (d) CV curves at different scan rates of HAC-2PANI; (e) Separation of capacitance current and diffusion current at 20 mV·s−1 of HAC-2PANI; (f) Ratio of capacitive contribution and diffusion contribution at different scan rates of HAC-2PANI; (g) GCD curves at different current densities of HAC-2PANI; (h) Rate capacity of HAC-2PANI; (i) Cycling stability of HAC-2PANI

    图  5  HAC-2PANI 水系超级电容器(HAC-PANI-SC)的电化学性能:(a) CV曲线;(b) GCD曲线;(c)拉贡图;HAC-2PANI 全固态超级电容器(s-HAC-PANI-SC)的电化学性能:(d) CV曲线;(e) GCD曲线;(f) HAC-PANI-SC、s-HAC-PANI-SC和HAC-SC器件在不同电流密度下质量比电容的对比

    Figure  5.  Electrochemical performance of HAC-2PANI based supercapacitor (HAC-PANI-SC): (a) CV curves; (b) GCD curves; (c) Ragone plot; Electrochemical performance of HAC-2PANI based all-solid supercapacitor (s-HAC-PANI-SC): (d) CV curves; (e) GCD curves; (f) Comparison of specific capacitance of HAC-PANI-SC, s-HAC-PANI-SC and HAC-SC devices at different current densities

    图  6  (a) HAC-2PANI 锌离子混合超级电容器(HAC-PANI-ZHSC)的结构示意图;(b) HAC-ZHSC和HAC-PANI-ZHSC的CV曲线;(c) HAC-PANI-ZHSC在不同电流密度下的放电曲线;(d) HAC-ZHSC和HAC-PANI-ZHSC在不同电流密度下比容量的比较;(e) HAC-PANI-ZHSC的循环稳定曲线;(f) HAC-PANI-ZHSC点亮LED灯的数码照片(从左至右依次为0、2、5、12 h)

    Figure  6.  (a) Schematic structure of HAC-2PANI based zinc-ion hybrid supercapacitor (HAC-PANI-ZHSC); (b) CV curves of HAC-ZHSC and HAC-PANI-ZHSC; (c) Discharge curves of HAC-PANI-ZHSC at different current densities; (d) Comparison of specific capacity at different current densities of HAC-ZHSC and HAC-PANI-ZHSC; (e) Cycling stability of HAC-PANI-ZHSC; (f) Digital photos of HAC-PANI-ZHSC lighting an LED lamp at 0, 2, 5, and 12 h

    表  1  不同HAC和苯胺(AN)质量比下HAC-PANI复合材料的命名

    Table  1.   Scheme of HAC-PANI composites with different mass ratio of HAC and aniline (AN)

    SampleMass ratio of HAC and AN
    HAC-0.5PANI 1∶0.5
    HAC-1PANI 1∶1
    HAC-2PANI 1∶2
    HAC-3PANI 1∶3
    下载: 导出CSV
  • [1] ZHAO Y, HE J, DAI M, et al. Emerging CoMn-LDH@MnO2 electrode materials assembled using nanosheets for flexible and foldable energy storage devices[J]. Journal of Energy Chemistry,2020,45:67-73. doi: 10.1016/j.jechem.2019.09.027
    [2] WANG J G, LIU H, ZHANG X, et al. Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-efficient energy storage[J]. Small,2018,14(13):1703950. doi: 10.1002/smll.201703950
    [3] RAN F, XU X, PAN D, et al. Ultrathin 2D metal-organic framework nanosheets in situ interpenetrated by functional CNTs for hybrid energy storage device[J]. Nanomicro Letters,2020,12(1):46.
    [4] ZHANG J, FENG H, QIN Q, et al. Interior design of three-dimensional CuO ordered architectures with enhanced performance for supercapacitors[J]. Journal of Materials Chemistry A,2016,4(17):6357-6367. doi: 10.1039/C6TA00397D
    [5] 韦会鸽, 李桂星, 万同, 等. 聚乳酸基聚苯胺柔性可降解超级电容器的制备及性能[J]. 复合材料学报, 2022, 39(1):193-202.

    WEI Huige, LI Guixing, WAN Tong, et al. Polyaniline growing on polylactic acid substrate towards flexible and biodegradable supercapacitors[J]. Acta Materiae Compositae Sinica,2022,39(1):193-202(in Chinese).
    [6] XIONG C, LI B, DUAN C, et al. Carbonized wood cell chamber-reduced graphene oxide@PVA flexible conductive material for supercapacitor, strain sensing and moisture-electric generation applications[J]. Chemical Engineering Journal,2021,418:129518. doi: 10.1016/j.cej.2021.129518
    [7] WEI H, GU H, GUO J, et al. Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields[J]. Advanced Composites and Hybrid Materials,2017,1(1):127-134.
    [8] WEI H, WANG H, LI A, et al. Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors[J]. Journal of Alloys and Compounds,2020,820:153111. doi: 10.1016/j.jallcom.2019.153111
    [9] CHEN L, JI T, BRISBIN L, et al. Hierarchical porous and high surface area tubular carbon as dye adsorbent and capacitor electrode[J]. ACS Applied Materials & Interfaces,2015,7(22):12230-12237. doi: 10.1021/acsami.5b02697
    [10] WANG H, YE W, YANG Y, et al. Zn-ion hybrid supercapaci-tors: Achievements, challenges and future perspectives[J]. Nano Energy,2021,85:105942. doi: 10.1016/j.nanoen.2021.105942
    [11] LIU N, WU X, ZHANG Y, et al. Building high rate capability and ultrastable dendrite-free organic anode for rechargeable aqueous zinc batteries[J]. Advanced Science,2020,7(14):2000146. doi: 10.1002/advs.202000146
    [12] ZHAO Y, WANG Y, ZHAO Z, et al. Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporous-carbon-supported poly(1, 5-naphthalenediamine) nanorods as cathode[J]. Energy Storage Materials,2020,28:64-72. doi: 10.1016/j.ensm.2020.03.001
    [13] XIN T, WANG Y, WANG N, et al. A high-capacity aqueous Zn-ion hybrid energy storage device using poly(4, 4′-thiodi-phenol)-modified activated carbon as a cathode material[J]. Journal of Materials Chemistry A,2019,7(40):23076-23083. doi: 10.1039/C9TA08693E
    [14] SINGH P, PAL K. Activated carbon-Polyaniline composite active material slurry electrode for high capacitance, improved rheological performance electrochemical flow capacitor[J]. Electrochimica Acta,2020,354:136719.
    [15] SONG S, MA F, WU G, et al. Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors[J]. Journal of Materials Chemistry A,2015,3(35):18154-18162. doi: 10.1039/C5TA04721H
    [16] LI Z F, ZHANG H, LIU Q, et al. Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors[J]. ACS Applied Materials & Interfaces,2013,5(7):2685-2691.
    [17] RAZALI S A, RUSI, MAJID S R. Fabrication of polyaniline nanorods on electro-etched carbon cloth and its electrochemical activities as electrode materials[J]. Ionics,2018,25(6):2575-2584.
    [18] GAO X, YUE H, GUO E, et al. In-situ polymerization growth of polyaniline nanowire arrays on graphene foam for high specific capacitance supercapacitor electrode[J]. Journal of Materials Science: Materials in Electronics,2017,28(23):17939-17947. doi: 10.1007/s10854-017-7736-2
    [19] 辛国祥, 王蒙蒙, 翟耀, 等. 一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料[J]. 复合材料学报, 2021, 38(4):1272-1282.

    XIN Guoxiang, WANG Mengmeng, ZHAI Yao, et al. One-step synthesis of polyaniline nanowire/self-supported graphene composite with excellent cycling stability[J]. Acta Materiae Compositae Sinica,2021,38(4):1272-1282(in Chinese).
    [20] LI Y, KAMDEM P, JIN X J. Hierarchical architecture of MXene/PANI hybrid electrode for advanced asymmetric supercapacitors[J]. Journal of Alloys and Compounds,2021,850:156608. doi: 10.1016/j.jallcom.2020.156608
    [21] WEI H, ZHU J, WU S, et al. Electrochromic polyaniline/graphite oxide nanocomposites with endured electroche-mical energy storage[J]. Polymer,2013,54(7):1820-1831. doi: 10.1016/j.polymer.2013.01.051
    [22] 侯朝霞, 赵蓝蔚. 三维多级孔石墨烯/聚苯胺复合材料的制备及电化学性能[J]. 复合材料学报, 2019, 36(7):1591-1600.

    HOU Zhaoxia, ZHAO Lanwei. Preparation and electrochemical performance of 3D hierarchical porous graphene/polyaniline composites[J]. Acta Materiae Compositae Sinica,2019,36(7):1591-1600(in Chinese).
    [23] HUANG Y Y, BAO S, LU J. Flower-like MnO2/polyaniline/hollow mesoporous silica as electrode for high-perfor-mance all-solid-state supercapacitors[J]. Journal of Alloys and Compounds,2020,845:156192. doi: 10.1016/j.jallcom.2020.156192
    [24] ZHAO N, DENG L, LUO D, et al. One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor[J]. Applied Surface Science,2020,526:146696. doi: 10.1016/j.apsusc.2020.146696
    [25] ZHUANG R, DONG Y, LI D, et al. Polyaniline-mediated coupling of Mn3O4 nanoparticles on activated carbon for high-performance asymmetric supercapacitors[J]. Jour-nal of Alloys and Compounds,2021,851:156871. doi: 10.1016/j.jallcom.2020.156871
    [26] SEYYED E, MOOSAVIFARD M F E K, MOHAMMAD S, et al. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces,2015,7:4851-4860.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1296
  • HTML全文浏览量:  486
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 修回日期:  2021-09-09
  • 录用日期:  2021-09-16
  • 网络出版日期:  2021-09-29
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回