留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

再生保温混凝土内部湿度与干燥收缩预测模型

黄嘉钰 刘元珍 王朝旭 戴小伟

黄嘉钰, 刘元珍, 王朝旭, 等. 再生保温混凝土内部湿度与干燥收缩预测模型[J]. 复合材料学报, 2022, 39(10): 4788-4800. doi: 10.13801/j.cnki.fhclxb.20210928.003
引用本文: 黄嘉钰, 刘元珍, 王朝旭, 等. 再生保温混凝土内部湿度与干燥收缩预测模型[J]. 复合材料学报, 2022, 39(10): 4788-4800. doi: 10.13801/j.cnki.fhclxb.20210928.003
HUANG Jiayu, LIU Yuanzhen, WANG Zhaoxu, et al. Prediction model of internal humidity and drying shrinkage of recycled aggregate thermal insulation concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4788-4800. doi: 10.13801/j.cnki.fhclxb.20210928.003
Citation: HUANG Jiayu, LIU Yuanzhen, WANG Zhaoxu, et al. Prediction model of internal humidity and drying shrinkage of recycled aggregate thermal insulation concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4788-4800. doi: 10.13801/j.cnki.fhclxb.20210928.003

再生保温混凝土内部湿度与干燥收缩预测模型

doi: 10.13801/j.cnki.fhclxb.20210928.003
基金项目: 国家自然科学基金国际合作与交流项目(51911530238;5201101735)
详细信息
    通讯作者:

    刘元珍,博士,教授,博士生导师,研究方向为结构工程 E-mail:liuyuanzhen@tyut.edu.cn

  • 中图分类号: TU528

Prediction model of internal humidity and drying shrinkage of recycled aggregate thermal insulation concrete

  • 摘要: 基于不同玻化微珠(GHBs)掺量下再生保温混凝土(RATIC)的干燥收缩和内部湿度试验结果,考虑GHBs内养护效应对混凝土产生的影响,通过回归分析提出了适用于预测RATIC的干燥收缩和内部湿度发展的理论模型,并对干燥收缩和内部湿度之间的关系进行了分析,并建立RATIC干燥收缩和内部湿度、GHBs掺量间的相互作用关系模型,为揭示RATIC收缩开裂现象的机制提供了理论基础和试验依据。研究表明,GHBs的掺入有利于延缓内部湿度的降低,进而延缓干燥收缩的发展,与再生混凝土(RAC)相比,90天龄期时GHBs掺量40、65、90 和 130 kg/m3的 40GHBs/RAC、65GHBs/RAC、90GHBs/RAC和130GHBs/RAC内部湿度衰减速率降低了19.57%、26.09%、30.43%和32.61%,干燥收缩分别降低了3.13%、4.69%、6.56%和10.31%;理论模型与试验结果的吻合度良好,可通过理论模型来预测RATIC干燥收缩和内部湿度的发展;内部湿度与干燥收缩间存在良好的相关性,可根据内部湿度的变化来评估干燥收缩的发展。

     

  • 图  1  试验流程图

    Figure  1.  Flow chart of test

    PVC—Polyvinyl chloride; RH—Relative humidity; DEMEC—Demountable mechanical strain gauge; RATIC—Recycled aggregate thermal insulation concrete

    图  2  再生保温混凝土(RATIC)内部湿度衰减率

    Figure  2.  Decreasing rate of internal humidity of recycled aggregate thermal insulation concrete (RATIC)

    图  3  不同龄期RATIC内部相对湿度和GHBs间的关系

    Figure  3.  Relationship between internal relative humidity of RATIC and GHBs content with different time

    图  4  RAC内部湿度变化

    Figure  4.  Internal relative humidity of RAC

    图  5  RATIC的Kt与龄期间的关系

    Figure  5.  Relationship between Kt of RATIC and time

    图  6  RATIC内部湿度试验值与修正模型的对比

    Figure  6.  Comparison of internal humidity experiment value and theoretical value from the modified model of RATIC

    图  7  RATIC抗压强度发展

    Figure  7.  Compressive strength development of RATIC

    图  8  RATIC的干燥收缩

    Figure  8.  Drying shrinkage of RATIC

    图  9  不同龄期RATIC干燥收缩和GHBs掺量间的关系

    Figure  9.  Relationship between drying shrinkage of RATIC and GHBs content with different time

    图  10  RATIC的AFREM模型与干燥收缩试验结果的对比

    Figure  10.  Comparison of AFREM model and drying shrinkage experiment results for RATIC

    图  11  不同龄期保温骨料影响系数$ {{K}}_{\text{B}} $与GHBs掺量间的关系

    Figure  11.  Relationship between insulation aggregate influence coefficient $ {{K}}_{\text{B}} $ and content of GHBs with different time

    图  12  GHBs内养护效果时间影响系数$ {\theta }_{\text{T}} $、再生混凝土(RAC)干燥收缩时间影响系数$ {{K}}_{\text{R}} $与时间的关系

    Figure  12.  Relationship between influence coefficient of curing effect time in GHBs $ {\theta }_{\text{T}} $, time influence coefficient of drying shrinkage on recycled aggregate concrete (RAC) $ {{K}}_{\text{R}} $ and time

    图  13  RATIC干燥收缩试验值与修正后模型理论值的对比

    Figure  13.  Comparison of drying shrinkage experiment value and theoretical value from the modified model of RATIC

    图  14  RATIC干燥收缩内部机制

    Figure  14.  Internal mechanism of drying shrinkage on RATIC

    图  15  RATIC内部湿度降低值与干燥收缩的关系

    Figure  15.  Relationship between internal relative humidity decrease and drying shrinkage of RATIC

    图  16  RATIC回归系数ABC与GHBs掺量$ \rho $的关系

    Figure  16.  Relationship between regression coefficients A, B, C and GHBs content $ \rho $ for RATIC

    表  1  胶凝材料的性质和化学成分

    Table  1.   Properties and chemical compositions of cementitious materials

    MaterialsSurface area to mass ratio/(m2·kg−1)Ignition loss/%Chemical composition/wt%
    SiO2Al2O3Fe2O3CaOMgO
    Cement 345 2.86 22.53 4.42 2.06 61.71 4.55
    Silica fume 16500 1.95 87.68 0.93 1.23 0.86 0.33
    下载: 导出CSV

    表  2  骨料的物理性质

    Table  2.   Physical properties of the aggregates

    AggregateParticle size/mmBulk density/(kg·m−3)Apparent density/(kg·m−3)Cylindrical compress strength/kPaWater absorption/%Moisture content/%Crushing index/%
    RCA 5-20 1170 2430 4.8 1.8 11.5
    GHBs 0.5-1.5 80 130 23 32.0 4.2
    Notes:RCA—Recycled coarse aggregate; GHBs—Glazed hollow beads.
    下载: 导出CSV

    表  3  混凝土配合比

    Table  3.   Concrete mixture proportions

    GroupRCA/(kg·m−3)Sand/(kg·m−3)Cement/(kg·m−3)Silica fume/(kg·m−3)GHBs/(kg·m−3)Water/Cement
    RAC 910 710 379 28 0 0.5
    40GHBs/RAC 910 663 379 28 40 0.5
    65GHBs/RAC 910 632 379 28 65 0.5
    90GHBs/RAC 910 542 379 28 90 0.5
    130GHBs/RAC 910 407 379 28 130 0.5
    Note:RAC—Recycled aggregate concrete.
    下载: 导出CSV

    表  4  RATIC内部湿度与GHBs掺量关系拟合曲线参数

    Table  4.   Parameters of fit curve for relationship between internal relative humidity and content of GHBs of RATIC

    ParameterTime/days
    3714286090
    $ {{K}}_{{t}} $0.7160.9421.0321.0341.1241.132
    $ {H}{(}{t}{,}{0}{)} $80.09777.25475.96769.28461.14558.235
    R20.9780.9350.9300.9540.9350.935
    Notes: $ {{K}}_{{t}} $—Time influence coefficient; $ {H}{(}{t}{,0)} $—Function on internal humidity of RAC with time; R2—Correlation coefficient.
    下载: 导出CSV
  • [1] AREEJ A, NASIM S, AHMED A, et al. Influence of temperature on mechanical properties of recycled asphalt pavement aggregate and recycled coarse aggregate concrete[J]. Construction and Building Materials,2021,269:121285. doi: 10.1016/j.conbuildmat.2020.121285
    [2] HASAN J, FATHOLLAH S. Micro-structural analysis of recycled concretes made with recycled coarse concrete aggregates[J]. Construction and Building Materials,2021,267:121041. doi: 10.1016/j.conbuildmat.2020.121041
    [3] SALIMBAHRAMI S R, SHAKERI R. Experimental investigation and comparative machine learning prediction of compressive strength of recycled aggregate concrete[J]. Soft Computing,2021,25(2):919-932. doi: 10.1007/s00500-021-05571-1
    [4] SCRIVENER K L, JOHN V M, GARTNER E M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry[J]. Cement and Concrete Research,2018,114:2-26. doi: 10.1016/j.cemconres.2018.03.015
    [5] PEDRO D, BRITO J D, EVANGELISTA L. Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: Mechanical, durability and long-term properties[J]. Construction and Building Materials,2017,154(15):294-309. doi: 10.1016/j.conbuildmat.2017.07.215
    [6] LI Z, LIU J, XIAO J, et al. Drying shrinkage of mortar manufactured with recycled fine aggregate at vary initial saturation degree[J]. Construction and Building Materials,2020,264:120621. doi: 10.1016/j.conbuildmat.2020.120621
    [7] LIM J S, CHEAH C B, RAMLI M B. The setting behavior, mechanical properties and drying shrinkage of ternary blended concrete containing granite quarry dust and processed steel slag aggregate[J]. Construction and Building Materials,2019,215:447-461. doi: 10.1016/j.conbuildmat.2019.04.162
    [8] MAHDI K, FAZEL A, MOHAMMAD H, et al. Effect of shrinkage reducing admixture on drying shrinkage of concrete with different W/C ratios[J]. Materials,2020,13(24):5721. doi: 10.3390/ma13245721
    [9] SAMOUH H, ROZIERE E, LOUKILI A. Experimental and numerical study of the relative humidity effect on drying shrinkage and cracking of self-consolidating concrete[J]. Cement and Concrete Research,2019,115:519-529. doi: 10.1016/j.cemconres.2018.08.008
    [10] JICHUN X, YAN H, LEPING L, et al. Exothermic behavior and drying shrinkage of alkali-activated slag concrete by low temperature preparation method[J]. Construction and Building Materials,2020,262:120056. doi: 10.1016/j.conbuildmat.2020.120056
    [11] BOUCHERIT D, KENAI S, KADRI E, et al. A simplified model for the prediction of long term concrete drying shrinkage[J]. KSCE Journal of Civil Engineering,2014,18(7):2196-2208. doi: 10.1007/s12205-014-0168-0
    [12] FATHIFAZL G, RAZAQPUR A G, ISGOR O B, et al. Creep and drying shrinkage characteristics of concrete produced with coarse recycled concrete aggregate[J]. Cement and Concrete Composites,2011,33(10):1026-1037. doi: 10.1016/j.cemconcomp.2011.08.004
    [13] YANG S. Effect of Different types of recycled concrete aggregates on equivalent concrete strength and drying shrinkage properties[J]. Applied Sciences,2018,8(11):2190. doi: 10.3390/app8112190
    [14] CABRAL A E B, SCHALCH V, MOLIN D C C D, et al. Mechanical properties modeling of recycled aggregate concrete[J]. Construction and Building Materials,2010,24(4):421-430. doi: 10.1016/j.conbuildmat.2009.10.011
    [15] BRITO J, ALVES F. Concrete with recycled aggregates: The portuguese experimental research[J]. Materials and Structures,2010,43(1):35-51. doi: 10.1617/s11527-010-9595-7
    [16] 张欢, 王玉银, 耿悦, 等. 考虑基体混凝土抗压强度影响的再生粗(细)骨料混凝土干燥收缩模型[J]. 建筑结构学报, 2020, 41(12):156-164.

    ZHANG Huan, WANG Yuyin, GENG Yue, et al. Drying shrinkage model for recycled fine and coarse aggregate concrete considering compressive strength of matrix concrete[J]. Journal of Building Structures,2020,41(12):156-164(in Chinese).
    [17] WANG Q, GENG Y, WANG Y, et al. Drying shrinkage model for recycled aggregate concrete accounting for the influence of parent concrete[J]. Engineering Structures,2020,202:109888. doi: 10.1016/j.engstruct.2019.109888
    [18] JIA Z, YANG Y, YANG L, et al. Hydration products, internal relative humidity and drying shrinkage of alkali activated slag mortar with expansion agents[J]. Construction and Building Materials,2018,158:198-207. doi: 10.1016/j.conbuildmat.2017.09.162
    [19] MA X, LIU J, SHI C. A review on the use of LWA as an internal curing agent of high performance cement-based materials[J]. Construction and Building Materials,2019,218:385-393. doi: 10.1016/j.conbuildmat.2019.05.126
    [20] CHOI S. Internal relative humidity and drying shrinkage of hardening concrete containing lightweight and normal-weight coarse aggregates: A comparative experimental study and modeling[J]. Construction and Building Materials,2017,148:288-296. doi: 10.1016/j.conbuildmat.2017.05.057
    [21] SHEN D, LIU C, WANG M, et al. Prediction model for internal relative humidity in early-age concrete under different curing humidity conditions[J]. Construction and Building Materials,2020,265:119987. doi: 10.1016/j.conbuildmat.2020.119987
    [22] 丁小平, 张君, 韩宇栋, 等. 考虑内养护剂释水的混凝土自干燥计算模型[J]. 建筑材料学报, 2022, 25(3):242-247. doi: 10.3969/j.issn.1007-9629.2021.01.001

    DING Xiaoping, ZHANG Jun, HAN Yudong, et al. A calculation model of concrete self-desiccation considering the water release of internal curing agent[J]. Journal of Building Materials,2022,25(3):242-247(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.01.001
    [23] 苗艳春, 张玉, SELYUTINA Nina, 等. 基于X-CT的高温后再生保温混凝土损伤研究[J]. 复合材料学报, 2022, 39(6):2829-2843. doi: 10.13801/j.cnki.fhclxb.20210716.007

    MIAO Yanchun, ZHANG Yu, SELYUTINA Nina, et al. Damage analysis of meso-scale recycled aggregate thermal insulation concrete based on X-CT after high temperature[J]. Acta Materiae Compositae Sinica,2022,39(6):2829-2843(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210716.007
    [24] GUO Y D, LIU Y Z, WANG W J, et al. A study on heat transfer performance of recycled aggregate thermal insulation concrete[J]. Journal of Building Engineering,2020,32:101797. doi: 10.1016/j.jobe.2020.101797
    [25] HAO L, LIU Y, WANG W, et al. Effect of salty freeze-thaw cycles on durability of thermal insulation concrete with recycled aggregates[J]. Construction and Building Materials,2018,189:‏478-486. doi: 10.1016/j.conbuildmat.2018.09.033
    [26] MA G, ZHANG Y, LIU Y, et al. Seismic behaviour of recycled aggregate thermal insulation concrete (RATIC) shear walls[J]. Magazine of Concrete Research,2015,67(3):145-162. doi: 10.1680/macr.14.00143
    [27] 方萍, 吴懿, 龚光彩. 膨胀玻化微珠的显微结构及其吸湿性能研究[J]. 材料导报, 2009, 23(10):112-114. doi: 10.3321/j.issn:1005-023X.2009.10.033

    FANG Ping, WU Yi, GONG Guangcai. Study on the microstructure of expanded and vitrified small balls and its sorption performance[J]. Materials Reports,2009,23(10):112-114(in Chinese). doi: 10.3321/j.issn:1005-023X.2009.10.033
    [28] WANG W, ZHAO L, LIU Y, et al. Mechanical properties and stress-strain relationship in axial compression for concrete with added glazed hollow beads and construction waste[J]. Construction and Building Materials,2014,71:425-434. doi: 10.1016/j.conbuildmat.2014.05.005
    [29] 董淑慧. 内部湿度对陶粒混凝土界面区结构与收缩影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    DONG Shuhui. Effect of internal relative humidity on interfacial transition zone structure and shrinkage of ceramsite concrete[D]. Harbin: Harbin Institute of Technology, 2010(in Chinese).
    [30] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Building Industry Press, 2009(in Chinese).
    [31] 中华人民共和国建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.

    Ministry of Construction of the People's Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2002[S]. Beijing: China Building Industry Press, 2003(in Chinese).
    [32] SHEN D J, WANG M L, CHEN Y, et al. Prediction model for relative humidity of early-age internally cured concrete with pre-wetted lightweight aggregates[J]. Construction and Building Materials,2017,144:717-727. doi: 10.1016/j.conbuildmat.2017.03.088
    [33] 常洪雷, 金祖权, 刘健. 自干燥及水分扩散引起的高性能混凝土内部湿度演变[J]. 材料导报, 2019, 33(14):2370-2375. doi: 10.11896/cldb.18060063

    CHANG Honglei, JIN Zuquan, LIU Jian. Relative humidity evolution of high performance concrete caused by self-desiccation and moisture diffusion[J]. Materials Reports,2019,33(14):2370-2375(in Chinese). doi: 10.11896/cldb.18060063
    [34] SHEN D, WANG T, CHEN Y, et al. Effect of internal curing with super absorbent polymers on the relative humidity of early-age concrete[J]. Construction and Building Materials,2015,99:246-253. doi: 10.1016/j.conbuildmat.2015.08.042
    [35] 魏亚, 郑小波, 郭为强. 干燥环境下内养护混凝土收缩、强度及开裂性能[J]. 建筑材料学报, 2016, 19(5):902-908. doi: 10.3969/j.issn.1007-9629.2016.05.020

    WEI Ya, ZHENG Xiaobo, GUO Weiqiang. Shrinkage, strength development and cracking of internally cured concrete exposed to dry conditions[J]. Journal of Building Materials,2016,19(5):902-908(in Chinese). doi: 10.3969/j.issn.1007-9629.2016.05.020
    [36] LE R, DE LARRARD F, PONS G. The AFREM code type model for creep and shrinkage of high-performance concrete[C]. Fourth International Symposium on the Utilization of High Strength /High Performance Concrete. Paris: Proceedings, 1996, 1: 387-396.
    [37] 王国杰, 郑建岚. 自密实混凝土收缩试验研究及收缩模型的建立[J]. 福州大学学报(自然科学版), 2014, 42(6):923-929.

    WANG Guojie, ZHENG Jianlan. Experimental study and modeling on shrinkage of self-compacting concrete[J]. Journal of Fuzhou University (Natural Science Edition),2014,42(6):923-929(in Chinese).
    [38] PICKETT G. Effect of Aggregate on shrinkage of concrete and a hypothesis concerning shrinkage[J]. Journal Proceedings,1956,52(1):581-590.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  471
  • HTML全文浏览量:  142
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-23
  • 修回日期:  2021-09-16
  • 录用日期:  2021-09-23
  • 网络出版日期:  2021-09-29
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回