留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳化硅-超高分子量聚乙烯纤维增强树脂基复合材料复合装甲板的抗穿甲弹侵彻性能及其损伤机制

贾楠 焦亚男 周庆 何业茂 陈利

贾楠, 焦亚男, 周庆, 等. 碳化硅-超高分子量聚乙烯纤维增强树脂基复合材料复合装甲板的抗穿甲弹侵彻性能及其损伤机制[J]. 复合材料学报, 2022, 39(10): 4908-4917. doi: 10.13801/j.cnki.fhclxb.20210928.002
引用本文: 贾楠, 焦亚男, 周庆, 等. 碳化硅-超高分子量聚乙烯纤维增强树脂基复合材料复合装甲板的抗穿甲弹侵彻性能及其损伤机制[J]. 复合材料学报, 2022, 39(10): 4908-4917. doi: 10.13801/j.cnki.fhclxb.20210928.002
JIA Nan, JIAO Yanan, ZHOU Qing, et al. Anti-penetration performance of SiC-ultra-high molecular weight polyethylene fiber reinforced resin matrix composite armor plate against armor piercing projectile and its damage mechanism[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4908-4917. doi: 10.13801/j.cnki.fhclxb.20210928.002
Citation: JIA Nan, JIAO Yanan, ZHOU Qing, et al. Anti-penetration performance of SiC-ultra-high molecular weight polyethylene fiber reinforced resin matrix composite armor plate against armor piercing projectile and its damage mechanism[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4908-4917. doi: 10.13801/j.cnki.fhclxb.20210928.002

碳化硅-超高分子量聚乙烯纤维增强树脂基复合材料复合装甲板的抗穿甲弹侵彻性能及其损伤机制

doi: 10.13801/j.cnki.fhclxb.20210928.002
详细信息
    通讯作者:

    焦亚男,博士,研究员,博士生导师,研究方向为纺织复合材料结构与性能 E-mail:jiaoyn@tiangong.edu.cn

  • 中图分类号: TB332

Anti-penetration performance of SiC-ultra-high molecular weight polyethylene fiber reinforced resin matrix composite armor plate against armor piercing projectile and its damage mechanism

  • 摘要: 以碳化硅陶瓷(SiC)作为面板材料,超高分子量聚乙烯纤维增强水性聚氨酯树脂基复合材料层压板(UHMWPE/WPU)作为背板材料,通过真空袋膜压工艺制备SiC-UHMWPE/WPU复合装甲板。基于弹道冲击试验研究复合装甲板的结构参数对其抗穿甲弹侵彻性能的影响,采用X射线计算机断层扫描(X-ray computed tomography,CT)技术,研究复合装甲板在53式7.62 mm穿甲弹以弹速为($ {808}_{-8}^{+7}) $ m/s进行多发弹道侵彻下的损伤模式。研究结果表明:SiC-UHMWPE/WPU复合装甲板的抗多发弹道侵彻能力随着UHMWPE/WPU厚度或SiC厚度的降低而逐渐下降,10 mm厚SiC+13 mm厚UHMWPE/WPU是试验中抗53式7.62 mm穿甲弹多发弹道侵彻的最佳工程应用结构;UHMWPE/WPU面密度的减少不仅影响UHMWPE/WPU的防护效率,其还通过降低对陶瓷面板的支撑作用,间接影响陶瓷的防护效率;弹道侵彻后的复合装甲板的损伤模式包括SiC碎裂、SiC与UHMWPE/WPU的界面破坏及UHMWPE/WPU的绝热剪切破坏、拉伸变形和分层破坏。

     

  • 图  1  实验路线示意图:(a) SiC-UHMWPE/WPU复合装甲板制备工艺;(b)弹道测试装置;(c)弹道侵彻后复合装甲板和弹丸的表面形貌;(d) 计算机断层(CT)扫描设备及其工作机制

    Figure  1.  Schematic of experimental route: (a) Preparation process of SiC-UHMWPE/WPU composite armor plate; (b) Illustration of ballistic test setup; (c) Surface morphologies of post-impact composite armor plate and post-impact projectile; (d) Illustration of computed tomography (CT) scan setup

    UFCL—UHMWPE fiber composite laminates; API—Armor piercing incendiary

    图  2  SiC-UHMWPE/WPU复合装甲板的抗弹道侵彻性能

    Figure  2.  Anti-penetration performance of SiC-UHMWPE/WPU composite armor plate

    图  3  SiC-UHMWPE/WPU复合装甲板在第一发弹着点处的比余量百分数

    Figure  3.  Specific margin percentage of SiC-UHMWPE/WPU composite armor plate at 1st impact point

    图  4  试验用1#~5#复合装甲板的第一发弹着点分布示意图

    Figure  4.  Schematic diagram of impact point distribution of the 1st impact point of 1#-5# composite armor plate

    图  5  SiC-UHMWPE/WPU复合装甲板内正六边形拼接陶瓷面板的损伤形貌:(a)中心区;(b)偏心区;(c)边界区

    Figure  5.  Damage morphologies of hexagonal spliced ceramic panel in SiC-UHMWPE/WPU composite armor plate: (a) Central area; (b) Eccentric area; (c) Edge area

    图  6  1# SiC-UHMWPE/WPU复合装甲板的弹孔剖面形貌:(a)第一发;(b)第二发;(c)第三发

    Figure  6.  Bullet-hole profile morphologies of 1# SiC-UHMWPE/WPU composite armor plate: (a) 1st shot; (b) 2nd shot; (c) 3rd shot

    图  7  弹道侵彻后1# SiC-UHMWPE/WPU复合装甲板在弹着点的多尺度损伤形貌:(a)宏观尺度;(b)细观尺度;(c)微观尺度

    Figure  7.  Multi-scale damage morphology of post-impact 1# SiC-UHMWPE/WPU composite armor plate at impact point: (a) Macro scale; (b) Meso scale; (c) Micro scale

    图  8  弹道侵彻下复合装甲板中UHMWPE/WPU的损伤机制示意图

    Figure  8.  Schematic diagram of damage mechanism of UHMWPE/WPU in composite armor plate during impact

    图  9  弹丸侵彻SiC-UHMWPE/WPU复合装甲板的过程示意图:(a)冲击波的传播;(b) SiC破碎吸能和UHMWPE/WPU加速运动;(c) UHMWPE/WPU剪切破坏、UHMWPE/WPU与SiC共同减速运动;(d) UHMWPE/WPU弹性回弹

    Figure  9.  Schematic diagram of penetration process of SiC-UHMWPE/WPU composite armor plate: (a) Propagation process of shock wave; (b) Energy absorption of SiC by crushing and acceleration of UHMWPE/WPU; (c) Shear failure of UHMWPE/WPU, joint deceleration of UHMWPE/WPU and SiC; (d) UHMWPE/WPU elastic rebound

    V—Velocity of projectile at different time t

    表  1  实验用SiC陶瓷及超高分子量聚乙烯(UHMWPE)纤维增强水性聚氨酯树脂(WPU)复合材料层压板的物理性能

    Table  1.   Physical properties of ultra-high molecular weight polyethylene (UHMWPE) fiber reinforced waterborne polyurethane (WPU) composite laminate and SiC ceramics in experiment

    MaterialDensity/(g·cm-3)Tensile strength at break/MPaYoung’s modulus/GPaTensile strain at break/%
    UHMWPE/WPU0.95-1.00738.1939.922.55
    SiC3.2250.00330.00
    下载: 导出CSV

    表  2  实验用SiC-UHMWPE/WPU复合装甲板的规格参数

    Table  2.   Specifications of SiC-UHMWPE/WPU composite armor plate in experiment

    NumberSiCUHMWPE/WPUSiC-UHMWPE/WPU
    Thickness/
    mm
    Thickness/
    mm
    Thickness/
    mm
    Areal density/
    (kg·m−2)
    1#1012.95723.9545.36
    2#1011.94522.9244.34
    3#1010.75421.5043.35
    4#109.61520.4542.35
    5#912.81522.6042.13
    下载: 导出CSV

    表  3  弹道测试实验参数

    Table  3.   Experimental parameters of ballistic test

    Reference
    standard
    ProjectileVelocity/
    (m·s−1)
    Material of
    bullet-core
    Shooting
    angle/(°)
    Shooting
    distance/m
    Shooting
    state
    GJB 4300A—2012[13]Type-53, 7.62 mm AP$ {808}_{-8}^{+7} $Hardened steel
    (HV 785)
    030Hang in the air
    Note: AP—Armor piercing.
    下载: 导出CSV

    表  4  弹丸侵彻速度和SiC-UHMWPE/WPU复合装甲板弹道测试结果

    Table  4.   Impacting velocity of projectile and ballistic test results of SiC-UHMWPE/WPU composite armor plate

    NumberShooting sequenceVelocity/(m·s−1)Post-impact stateResidual thickness/mmDistribution area of impact point
    1#1st811NP10.727Eccentric area
    2nd809NP7.725Eccentric area
    3rd815NP10.154Central area
    2#1st811NP10.600Central area
    2nd809NP6.813Eccentric area
    3rd813NP5.514Central area
    3#1st811NP6.551Central area
    2nd808CP0Eccentric area
    3rd810NP7.978Central area
    4#1st812NP4.033Central area
    2nd808CP0Eccentric area
    3rd813CP0Eccentric area
    5#1st811NP8.853Central area
    2nd808CP0Central area
    3rd814NP5.690Edge area
    Notes: NP—Non-perforating; CP—Complete perforating.
    下载: 导出CSV
  • [1] WANG Z Y, LI P F. A model incorporating damage evolution to predict the penetration behavior of a ceramic target subjected to the long projectile impact[J]. International Journal of Impact Engineering,2020,135:103393. doi: 10.1016/j.ijimpeng.2019.103393
    [2] TEPEDUZU B, KARAKUZU R. Ballistic performance of ceramic/composite structures[J]. Ceramics International,2018,45(2):1651-1660.
    [3] CHEN Y, HUANG W K, YEH J N, et al. Theoretical analysis of bulletproof capability of multilayer ceramic composites subjected to impact by an armor piercing projectile[J]. Advances in Materials Science and Engineering,2021,2021(1):9922229.
    [4] RAHBEK D, JOHNSEN B. Fragmentation of an armour piercing projectile after impact on composite covered alumina tiles[J]. International Journal of Impact Engineering,2019,133:103332. doi: 10.1016/j.ijimpeng.2019.103332
    [5] BATRA R, PYDAH A. Impact analysis of PEEK/ceramic/gelatin composite for finding behind the armor trauma[J]. Composite Structures,2020,237(1):111863.
    [6] FEJDYS M, KOSLA K, KUCHARSKA-JASTRZABEK A, et al. Influence of ceramic properties on the ballistic perfor-mance of the hybrid ceramic-multi-layered UHMWPE composite armour[J]. Journal of the Australian Ceramic Society,2021,57:149-161. doi: 10.1007/s41779-020-00516-7
    [7] ZHANG B W, WANG Y W, DU S F, et al. Influence of backing plate support conditions on armor ceramic protection efficiency[J]. Materials,2020,13(15):3427. doi: 10.3390/ma13153427
    [8] LIU W L, CHEN Z H, CHEN Z F, et al. Influence of different back laminate layers on ballistic performance of ceramic composite armor[J]. Materials & Design,2015,87:421-427.
    [9] GAO Y B, ZHANG W, XU P, et al. Influence of epoxy adhesive layer on impact performance of TiB2-B4C composites armor backed by aluminum plate[J]. International Jour-nal of Impact Engineering,2018,122:60-72. doi: 10.1016/j.ijimpeng.2018.07.017
    [10] TASDEMIRCI A, TUNUSOGlU G. Experimental and numerical investigation of the effect of interlayer on the damage formation in a ceramic/composite armor at a low projectile velocity[J]. Journal of Thermoplastic Composite Materials,2017,30(1):88-106. doi: 10.1177/0892705715584410
    [11] CAO J F, LAI J Z, ZHOU J H, et al. Experiments and simulations of the ballistic response of ceramic composite armors[J]. Journal of Mechanical Science and Technology,2020,34(7):2783-2793. doi: 10.1007/s12206-020-0611-8
    [12] LUO D J, WANG Y W, WANG F C, et al. Ballistic behavior of oblique ceramic composite structure against long-rod tungsten projectiles[J]. Materials (Basel, Switzerland),2019,12(18):2946. doi: 10.3390/ma12182946
    [13] 中国人民解放军总后勤部军需装备研究所, 国家特种防护服装质量监督检验中心. 军用防弹衣安全技术性能要求: GJB 4300A—2012[S]. 北京: 中国人民解放军总后勤部, 2012.

    Quartermaster Equipment Research Institute of the General Logistics Department of the Chinese People's Liberation Army, National Center for Quality Supervision and Inspection of Special Protective Clothing. Requirements of safety technical performance for military body armor: GJB 4300A—2012[S]. Beijing: General Logistics Department of the Chinese People's Liberation Army, 2012(in Chinese).
    [14] BRAGA F, LOPES P L M, MXICHELLE S O, et al. Thickness assessment and statistical optimization of a 3-layered armor system with ceramic front and curaua fabric composite/aluminum alloy backing[J]. Composites Part B,2019,166(1):48-55.
    [15] SEIFERT W, STRAS, SBURGER E, et al. Experimental study on the dependency of the ballistic performance of tiled ceramic/metal targets on inter tile gap width and projectile impact position[J]. International Journal of Impact Engineering,2018,122(5):50-59.
    [16] 胡丽萍, 王和平, 王智慧, 等. 陶瓷复合装甲不同区域抗弹丸穿甲能力试验研究[J]. 弹箭与制导学报, 2010, 30(5):90-92. doi: 10.3969/j.issn.1673-9728.2010.05.025

    HU Liping, WANG Heping, WANG Zhihui, et al. Experimental study on anti bullet penetration ability of ceramic composite armor in different areas[J]. Journal of Projectiles, Rockets, Missiles and Guidance,2010,30(5):90-92(in Chinese). doi: 10.3969/j.issn.1673-9728.2010.05.025
    [17] TAN M T, ZHANG X F, GOH W L, et al. Study on transition from dwell/interface defeat to penetration of long-rod projectile impacting silicon carbide[J]. International Journal of Fracture,2019,219(1):65-87. doi: 10.1007/s10704-019-00379-5
    [18] ZHANG Y J, DONG H, LIANG K, et al. Impact simulation and ballistic analysis of B4C composite armour based on target plate tests[J]. Ceramics International,2021,47(7):10035-10049. doi: 10.1016/j.ceramint.2020.12.150
    [19] BAVDEKAR S, SUBHASH G. A unified model for dwell and penetration during long rod impact on thick ceramic targets[J]. International Journal of Impact Engineering,2019,131:304-316. doi: 10.1016/j.ijimpeng.2019.05.014
    [20] HOGAN J, FARBANIEC L, MALLICK D, et al. Fragmentation of an advanced ceramic under ballistic impact: Mecha-nisms and microstructure[J]. International Journal of Impact Engineering,2017,102:47-54. doi: 10.1016/j.ijimpeng.2016.12.008
    [21] MO G, MA Q, JIN Y, et al. Delamination process in cross-ply UHMWPE laminates under ballistic penetration[J]. Defence Technology,2021,17(1):278-286. doi: 10.1016/j.dt.2020.05.001
    [22] ABDULHAMID H, DECONINCK P, HEREIL P L, et al. Study of the ballistic behavior of UHMWPE composite material: Experimental characterization and numerical simulation[J]. EPJ Web of Conferences, 2018, 183: 01051.
    [23] 何业茂, 焦亚男, 周庆, 等. 超高分子量聚乙烯纤维/水性聚氨酯复合材料层压板抗软钢芯弹侵彻性能及其损伤机制[J]. 复合材料学报, 2021, 38(5):1455-1467.

    HE Yemao, JIAO Yanan, ZHOU Qing, et al. Penetration resistance of ultra high molecular weight polyethylene fiber/waterborne polyurethane composite laminate to soft steel core projectile and its damage mechanism[J]. Acta Materiae Compositae Sinica,2021,38(5):1455-1467(in Chinese).
    [24] ATTWOOD J P, KHA-DERI S N, KARTHIKEYAN K, et al. The out-of-plane compressive response of Dyneema® composites[J]. Journal of the Mechanics and Physics of Solids,2014,70:200-226. doi: 10.1016/j.jmps.2014.05.017
    [25] 余同希, 邱信明. 冲击动力学[M]. 北京: 清华大学出版社, 2011: 171-176.

    YU Tongxi, QIU Xinming. Impact dynamics[M]. Beijing: Tsinghua University Press, 2011: 171-176(in Chinese).
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  717
  • HTML全文浏览量:  210
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-17
  • 修回日期:  2021-09-07
  • 录用日期:  2021-09-18
  • 网络出版日期:  2021-09-29
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回