留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双缺陷调控的Z型BiVO4−x/g-C3N4−x异质结的制备及其光催化全解水

杨玉蓉 王佳慧 马远驰 邱敏 闫国民 刘宇飞

杨玉蓉, 王佳慧, 马远驰, 等. 双缺陷调控的Z型BiVO4−x/g-C3N4−x异质结的制备及其光催化全解水[J]. 复合材料学报, 2022, 39(10): 4642-4651. doi: 10.13801/j.cnki.fhclxb.20210927.003
引用本文: 杨玉蓉, 王佳慧, 马远驰, 等. 双缺陷调控的Z型BiVO4−x/g-C3N4−x异质结的制备及其光催化全解水[J]. 复合材料学报, 2022, 39(10): 4642-4651. doi: 10.13801/j.cnki.fhclxb.20210927.003
YANG Yurong, WANG Jiahui, MA Yuanchi, et al. Preparation of Z-scheme BiVO4−x/g-C3N4−x heterojunction mediated by double defects and photocatalytic overall water splitting[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4642-4651. doi: 10.13801/j.cnki.fhclxb.20210927.003
Citation: YANG Yurong, WANG Jiahui, MA Yuanchi, et al. Preparation of Z-scheme BiVO4−x/g-C3N4−x heterojunction mediated by double defects and photocatalytic overall water splitting[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4642-4651. doi: 10.13801/j.cnki.fhclxb.20210927.003

双缺陷调控的Z型BiVO4−x/g-C3N4−x异质结的制备及其光催化全解水

doi: 10.13801/j.cnki.fhclxb.20210927.003
基金项目: 黑龙江省自然科学基金(LH2021E098);哈尔滨工程大学超轻材料与表面技术教育部重点实验室开放课题(HEU10202119)
详细信息
    通讯作者:

    杨玉蓉,博士,教授,硕士生导师,研究方向为光催化材料的制备及应用  E-mail:yangyurong@hrbeu.edu.cn

  • 中图分类号: TK91;O644.1

Preparation of Z-scheme BiVO4−x/g-C3N4−x heterojunction mediated by double defects and photocatalytic overall water splitting

  • 摘要: 为了获得高效的全解水光催化体系,采用固相烧结法和水热法制备了双缺陷调控的Z型BiVO4−x/g-C3N4−x异质结,对异质结的微观结构和光电特性进行了表征,测试了BiVO4−x/g-C3N4−x异质结的光催化全解水制氢、氧的性能。结果表明:丰富的氧空位和氮空位的引入、紧密连接的复合结构界面及直接Z型异质结的构筑,提高了材料对可见光的吸收,加快了光生电荷的分离和传输,从而导致材料具有高效的光催化活性。双缺陷调控的Z型BiVO4−x/g-C3N4−x异质结具有优异的光催化活性和稳定性,在可见光照射下,不添加任何吸收剂析氢速率可达654 μmol/(h·g),是g-C3N4−x前驱体的6.5倍,析氧速率可达302 μmol/(h·g),经过20 h的长时间可见光照射,样品的光催化活性没有下降。

     

  • 图  1  g-C3N4−x、BiVO4和BiVO4−x/g-C3N4−x复合材料的XRD图谱 (a) 和局部放大的XRD图谱 (b)

    Figure  1.  XRD patterns (a) and the enlarged patterns (b) of g-C3N4−x, BiVO4 and BiVO4−x/g-C3N4−x composites

    图  2  g-C3N4和g-C3N4-x (a)、BiVO4和BiVO4-x/g-C3N4-x (b)复合材料的电子自旋共振(ESR)图谱

    Figure  2.  Electron spin-resonance (ESR) spectras of g-C3N4 and g-C3N4−x (a), BiVO4 and BiVO4−x/g-C3N4−x (b) composites

    图  3  20wt%BiVO4−x/g-C3N4−x的XPS图谱:(a) 全谱;(b) Bi4f;(c) V2p;(d) O1s;(e) C1s;(f) N1s

    Figure  3.  XPS patterns of 20wt%BiVO4−x/g-C3N4−x: (a) Full spectrum; (b) Bi4f; (c) V2p; (d) O1s; (e) C1s; (f) N1s

    Ov—Oxygen vacancy

    图  4  BiVO4 (a)和20wt%BiVO4−x/g-C3N4−x (b) 样品的TEM图像;20wt%BiVO4−x/g-C3N4−x样品的HRTEM图像((c), (d));20wt%BiVO4−x/g-C3N4−x样品的EDS能谱图((e)~(k))

    Figure  4.  TEM images of BiVO4 (a) and 20wt%BiVO4−x/g-C3N4−x (b); HRTEM images of 20wt%BiVO4−x/g-C3N4−x((c), (d); EDS spectras of 20wt%BiVO4−x/g-C3N4−x ((e)-(k))

    图  5  g-C3N4-x、BiVO4和BiVO4-x/g-C3N4-x复合材料的FTIR图谱

    Figure  5.  FTIR spectra of g-C3N4-x, BiVO4 and BiVO4-x/g-C3N4-x

    图  6  g-C3N4−x、BiVO4和BiVO4−x/g-C3N4−x复合材料的光致发光(PL)图谱 (a) 和瞬时光电流(i-t)响应 (b)

    Figure  6.  Photoluminescence (PL) spectra (a) and instantaneous photocurrent (i-t) response (b) of g-C3N4−x, BiVO4 and 20wt%BiVO4−x/g-C3N4−x

    图  7  (a) g-C3N4−x、BiVO4和20wt%BiVO4−x/g-C3N4−x复合材料的UV-Vis漫反射吸收图谱;(b) g-C3N4−x和BiVO4的带隙

    Figure  7.  (a) UV-Vis diffuse reflectance spectra of g-C3N4−x, BiVO4 and 20wt%BiVO4−x/g-C3N4−x; (b) Band gaps of g-C3N4−x and BiVO4

    图  8  (a) g-C3N4−x和BiVO4的价带谱;(b) 20wt%BiVO4−x/g-C3N4−x复合材料的能带结构图

    Figure  8.  (a) XPS valence band spectra of g-C3N4−x and BiVO4; (b) Band structure of 20wt%BiVO4−x/g-C3N4−x

    Ec—Conduction band potential; Ev—Valence band potential; NHE—Standard hydrogen electrode

    图  9  可见光驱动下各样品的光催化性能:(a) 20wt%BiVO4−x/g-C3N4−x产H2、O2性能;(b) g-C3N4−x的产H2性能;(c) BiVO4的产O2性能;(d) 20wt%BiVO4−x/g-C3N4−x的量子效率

    Figure  9.  Visible-light driven photocatalytic performance: (a) H2 and O2 generation for 20wt%BiVO4−x/g-C3N4−x; (b) H2 generation for g-C3N4−x; (c) O2 generation for BiVO4; (d) Quantum efficiency of 20wt%BiVO4−x/g-C3N4−x

  • [1] 路彦丽, 王靖宇, 王建省, 等. Cu2ZnSnS4-CdS复合材料的制备及其在光催化制氢中的应用[J]. 复合材料学报, 2019, 36(9):2169-2175. doi: 10.13801/j.cnki.fhclxb.20181201.001

    LU Yanli, WANG Jingyu, WANG Jiansheng, et al. Preparation of Cu2ZnSnS4-CdS composite and its application in pohotocatalytic hydrogen production[J]. Acta Materiae Compositae Sinica,2019,36(9):2169-2175(in Chinese). doi: 10.13801/j.cnki.fhclxb.20181201.001
    [2] HUANG W, HE Q, HU Y P, et al. Molecular heterostructures of covalent triazine frameworks for enhanced photocatalytic hydrogen production[J]. Angewandte Chemie International Edition,2019,58(26):8676-8680. doi: 10.1002/anie.201900046
    [3] 黄冬根, 莫壮洪, 全水清, 等. 石墨烯/纳米TiO2复合材料的制备及光催化还原性能[J]. 复合材料学报, 2016, 33(1):155-162. doi: 10.13801/j.cnki.fhclxb.20150428.003

    HUANG Donggen, MO Zhuanghong, QUAN Shuiqing, et al. Preparation and photocatalytic reduction performance of graphene/nano-TiO2 composites[J]. Acta Materiae Compositae Sinica,2016,33(1):155-162(in Chinese). doi: 10.13801/j.cnki.fhclxb.20150428.003
    [4] SHAO B B, LIU X J, LIU Z F, et al. A novel double Z-scheme photocatalyst Ag3PO4/Bi2S3/Bi2O3 with enhanced visible-light photocatalytic performance for antibiotic degradation[J]. Chemical Engineering Journal,2019,368:730-745. doi: 10.1016/j.cej.2019.03.013
    [5] ZENG C, HU Y M, ZHANG T R, et al. A core-satellite structured Z-scheme catalyst Cd0.5Zn0.5S/BiVO4 for highly efficient and stable photocatalytic water splitting[J]. Journal of Materials Chemistry A,2018,6(35):16932-16942. doi: 10.1039/C8TA04258F
    [6] LIU C, FU Y, ZHAO J, et al. All-solid-state Z-scheme system of NiO/CDs/BiVO4 for visible light-driven efficient overall water splitting[J]. Chemical Engineering Journal,2019,358:134-142. doi: 10.1016/j.cej.2018.10.005
    [7] LIU D N, CHEN D Y, LI N J, et al. Surface engineering of g-C3N4 by stacked oxygen vacancies-rich BiOBr sheets for boosting photocatalytic performance[J]. Angewandte Chemie International Edition,2020,59(11):4519-4524. doi: 10.1002/anie.201914949
    [8] YU H J, SHI R, ZHAO Y X, et al. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution[J]. Advanced Materials,2017,29(16):1605148. doi: 10.1002/adma.201605148
    [9] WEI T C, ZHU Y N, AN X Q, et al. Defect modulation of Z-scheme TiO2/Cu2O photocatalysts for durable water splitting[J]. ACS Catalyst,2019,9(9):8346-8354. doi: 10.1021/acscatal.9b01786
    [10] KONG H J, KIM K H, KIM S, et al. Unveiling the role of tetragonal BiVO4 as a mediator for dual phase BiVO4/g-C3N4 composite photocatalysts enabling highly efficient water oxidation via Z-scheme charge transfer[J]. Journal of Materials Chemistry A,2019,7(46):26279-26284. doi: 10.1039/C9TA10704E
    [11] HU J D, CHEN C, ZHENG Y, et al. Spatially separating redox centers on Z-scheme ZnIn2S4/BiVO4 hierarchical heterostructure for highly effcient photocatalytic hydrogen evolution[J]. Small,2020,16(37):2002988. doi: 10.1002/smll.202002988
    [12] ZHU M S, SUN Z C, FUJITSUKA M, et al. Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light[J]. Angewandte Chemie International Edition,2018,57(8):2160-2164. doi: 10.1002/anie.201711357
    [13] LIN L H, YU Z Y, WANG X C. Crystalline carbon nitride semiconductors for photocatalytic water splitting[J]. Angewandte Chemie International Edition,2019,58(19):6164-6175. doi: 10.1002/anie.201809897
    [14] WANG J C, YAO H C, FAN Z Y, et al. Indirect Z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation[J]. ACS Applied Materials & Interfaces,2016,8(6):3765-3775. doi: 10.1021/acsami.5b09901
    [15] NIU P, QIAO M, LI Y F, et al. Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution[J]. Nano Energy,2018,44:73-81. doi: 10.1016/j.nanoen.2017.11.059
    [16] ZOU X J, DONG Y Y, LI X Y, et al. Inorganic-organic photocatalyst BiPO4/g-C3N4 for efficient removal of gaseous toluene under visible light irradiation[J]. Catalysis Communications,2015,69:109-113. doi: 10.1016/j.catcom.2015.04.035
    [17] SUN Z C, YU Z Q, LIU Y Y, et al. Construction of 2D/2D BiVO4/g-C3N4 nanosheet heterostructures with improved photocatalytic activity[J]. Journal of Colloid and Interface Science,2019,533:251-258. doi: 10.1016/j.jcis.2018.08.071
    [18] 刘成宝, 唐飞, 朱晨, 等. WO3-Ag/g-C3N4 Z 型光催化材料的合成及其光催化性能研究[J]. 复合材料学报, 2021, 38(1):209-220. doi: 10.13801/j.cnki.fhclxb.20200622.004

    LIU Chengbao, TANG Fei, ZHU Chen, et al. Preparation and photocatalytic properties of WO3-Ag/g-C3N4 Z-scheme photocatalyst[J]. Acta Materiae Compositae Sinica,2021,38(1):209-220(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200622.004
    [19] 胡金娟, 马春雨, 王佳琳, 等. Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能[J]. 复合材料学报, 2020, 37(6):1401-1410. doi: 10.13801/j.cnki.fhclxb.20191217.001

    HU Jinjuan, MA Chunyu, WANG Jialin, et al. Preparation and photocatalytic properties of Ag-Ag2O/TiO2-g-C3N4 nanocomposites[J]. Acta Materiae Compositae Sinica,2020,37(6):1401-1410(in Chinese). doi: 10.13801/j.cnki.fhclxb.20191217.001
    [20] 孟培媛, 郭明媛, 乔勋. WS2/g-C3N4异质结光催化分解水制氢性能及机制[J]. 复合材料学报, 2021, 38(2):591-600. doi: 10.13801/j.cnki.fhclxb.20201011.001

    MENG Peiyuan, GUO Mingyuan, QIAO Xun. H2 production performance of photocatalyst and mechanism of WS2/g-C3N4 heterojunction[J]. Acta Materiae Compositae Sinica,2021,38(2):591-600(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201011.001
    [21] YU J G, YU J C, LEUNG M K P, et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania[J]. Journal of Catalysis,2003,217(1):69-78. doi: 10.1016/S0021-9517(03)00034-4
    [22] XIANG Q J, YU J G, JARONIEC M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites[J]. Journal of Physical Chemistry C,2011,115(15):7355-7363. doi: 10.1021/jp200953k
    [23] TAN H Q, ZHAO Z, NIU M, et al. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity[J]. Nanoscale,2014,6(17):10216-10223. doi: 10.1039/C4NR02677B
    [24] 左士祥, 曹晓曼, 吴红叶, 等. g-C3N4 量子点-TiO2/导电凹凸棒石复合材料的制备及其光催化性能[J]. 复合材料学报, 2021, 38(8):2706-2714. doi: 10.13801/j.cnki.fhclxb.20201011.003

    ZUO Shixiang, CAO Xiaoman, WU Hongye, et al. Preparation of g-C3N4 quantum dot-TiO2/conductive attapulgite composites and their photocatalytic performance[J]. Acta Materiae Compositae Sinica,2021,38(8):2706-2714(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201011.003
  • 加载中
图(9)
计量
  • 文章访问数:  1085
  • HTML全文浏览量:  533
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 修回日期:  2021-09-02
  • 录用日期:  2021-09-13
  • 网络出版日期:  2021-09-28
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回