留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯量子点/Ce-2-甲基咪唑的制备及其宽光谱抗菌性能

张柯杰 张晨诚 傅炀杰 谭盟 毛惠秀 姬云 王齐

张柯杰, 张晨诚, 傅炀杰, 等. 石墨烯量子点/Ce-2-甲基咪唑的制备及其宽光谱抗菌性能[J]. 复合材料学报, 2022, 39(8): 3891-3897. doi: 10.13801/j.cnki.fhclxb.20210927.002
引用本文: 张柯杰, 张晨诚, 傅炀杰, 等. 石墨烯量子点/Ce-2-甲基咪唑的制备及其宽光谱抗菌性能[J]. 复合材料学报, 2022, 39(8): 3891-3897. doi: 10.13801/j.cnki.fhclxb.20210927.002
ZHANG Kejie, ZHANG Chencheng, FU Yangjie, et al. Preparation of graphene quantum dots/Ce-2-methylimidazole heterojunction and its wide-spectrum antibacterial activity[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3891-3897. doi: 10.13801/j.cnki.fhclxb.20210927.002
Citation: ZHANG Kejie, ZHANG Chencheng, FU Yangjie, et al. Preparation of graphene quantum dots/Ce-2-methylimidazole heterojunction and its wide-spectrum antibacterial activity[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3891-3897. doi: 10.13801/j.cnki.fhclxb.20210927.002

石墨烯量子点/Ce-2-甲基咪唑的制备及其宽光谱抗菌性能

doi: 10.13801/j.cnki.fhclxb.20210927.002
基金项目: 国家自然科学基金(21876154;21477114);浙江省自然科学基金(LR18B070001)
详细信息
    通讯作者:

    王齐,博士,教授,博士生导师,研究方向为环境光催化 E-mail:wangqi8327@zjgsu.edu.cn

  • 中图分类号: O614

Preparation of graphene quantum dots/Ce-2-methylimidazole heterojunction and its wide-spectrum antibacterial activity

  • 摘要: 光催化作为一种新型抗菌方式引起广泛关注,开发高效可见光催化剂是热点研究方向之一。本文通过一种绿色化学法合成了石墨烯量子点(GQDs),并在室温下以GQDs、硝酸铈、2-甲基咪唑(2MI)为原料,采用一锅沉淀法合成了GQDs/Ce-2MI。调整GQDs的起始添加量,得到不同GQDs负载量的复合光催化剂,通过光电化学测试发现,25vol%GQDs/Ce-2MI样品具有高的光电流响应。进一步固定2MI为有机配体,制备不同中心金属离子(Mn+: Co2+、Fe2+、Fe3+)的M-2MI,并进行对比。在可见光照射下,以大肠杆菌(E. coli)为目标菌种,考察了不同催化剂的抗菌性能。研究发现,GQDs/Ce-2MI的抗菌性能最佳,可见光照射60 min后,实现超过99%的灭菌效果。以优选GQDs/Ce-2MI为光催化剂,研究了光源波长、不同菌种的影响。结果表明,GQDs/Ce-2MI在较宽光谱范围内有较好的抗菌能力,对金黄色葡萄球菌(S. aureus)也具有普适性抗菌效果。通过猝灭剂实验推测对E. coli消灭的主要活性物种为空穴(h+)和羟基自由基(•OH)。

     

  • 图  1  Ce-2-甲基咪唑(Ce-2MI)和石墨烯量子点/Ce-2-甲基咪唑(GQDs/Ce-2MI)的XRD图谱

    Figure  1.  XRD patterns of Ce-2-methylimidazole (Ce-2MI) and graphene quantum dots/Ce-2-methylimidazole (GQDs/Ce-2MI)

    图  2  Ce-2MI和GQDs/Ce-2MI的FTIR图谱

    Figure  2.  FTIR spectra of Ce-2MI and GQDs/Ce-2MI

    图  3  Ce-2MI 和GQDs/Ce-2MI的N2吸附-脱附曲线 (内插图为GQDs的TEM图像)

    Figure  3.  N2 adsorption-desorption curves of Ce-2MI and GQDs/Ce-2MI (Illustration is TEM images of GQDs)

    图  4  Ce-2MI和不同比例GQDs/Ce-2MI的紫外-可见漫反射光谱 (插图为Ce-2MI带隙图)

    Figure  4.  UV-vis diffuse reflectance spectra of of Ce-2MI and different ratio GQDs/Ce-2MI (Illustration is band gap diagram of Ce-2MI)

    图  5  Ce-2MI、GQDs及不同比例GQDs/Ce-2MI的电流-时间(i-t)曲线 (a) 和交流阻抗谱 (b)

    Figure  5.  Current-time (i-t) curves (a) and EIS Nyquist plots (b) of Ce-2MI, GQDs and different ratios of GQDs/Ce-2MI

    图  6  Ce-2MI、GQDs和GQDs/Ce-2MI等对E. coli的抗菌效果 (a),E. coli抗菌照片对比 (b),Ce-2MI、GQDs和25vol%GQDs/Ce-2MI对S. aureus的抗菌效果 (c)

    Figure  6.  Antibacterial effect of E. coli by Ce-2MI, GQDs and GQDs/Ce-2MI (a), comparison of E. coli antibacterial photos (b) and antibacterial effect of S. aureus by Ce-2MI, GQDs and 25vol%GQDs/Ce-2MI (c)

    图  7  不同波长 (a)、金属离子中心 (b) 和猝灭剂 (c)对E. coli抗菌效果

    Figure  7.  Antibacterial effects of different wavelength (a), metal ion centers (b) and quencher (c) on E. coli

    图  8  Ce-2MI的平带电势图 (a) 和光催化机制图 (b)

    Figure  8.  Flat band potential diagram (a) and photocatalytic mechanism diagram (b) of Ce-2MI

  • [1] LI P, LI J Z, FENG X, et al. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning[J]. Nature Communications,2019,10:2177. doi: 10.1038/s41467-018-07709-6
    [2] LI X, HAO H, LANG X. Thiazolo[5, 4d] thiazole linked conjugated microporous polymer photocatalysis for selective aerobic oxidation of amines[J]. Journal of Colloid and Interface Science, 2021, 593: 380-389.
    [3] LANG X, CHEN X, ZHAO J. Heterogeneous visible light photocatalysis for selective organic transformations[J]. Chemical Society Reviews,2013,43:473-486.
    [4] QIN J, WANG S, WANG X. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst[J]. Applied Catalysis B: Environmental,2017,209:476-482. doi: 10.1016/j.apcatb.2017.03.018
    [5] GAO Q, LIN D, FAN Y, et al. Visible light induced photocatalytic reduction of Cr(VI) by self-assembled and amorphous Fe-2MI[J]. Chemical Engineering Journal,2019,374:10-19. doi: 10.1016/j.cej.2019.05.151
    [6] 卫思颖, 马建中, 范倩倩. 量子点/TiO2复合光催化材料的研究进展[J]. 复合材料学报, 2021, 38(3): 712–721.

    WEI Siying, MA Jianzhong, FAN Qianqian. Research advances on quantum dots/TiO2 composite photocatalytic materials[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 712-721(in Chinese).
    [7] ROUSHANI M, MAVAEI M, RAJABI H R. Graphene quantum dots as novel and green nano-materials for the visible light-driven photocatalytic degradation of cationic dye[J]. Journal of Molecular Catalysis A: Chemical,2015, 409:109-112.
    [8] CHEN W, LI D, TIAN L, et al. Synthesis of graphene quantum dots from natural polymer starch for cell imaging[J]. Green Chemistry,2018,20:4438-4442. doi: 10.1039/C8GC02106F
    [9] TANG L, JI R, CAO X, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots[J]. ACS Nano,2012,6:5102-5110. doi: 10.1021/nn300760g
    [10] XIAO J, HAN L, LUO J, et al. Integration of plasmonic effects and schottky junctions into metal-organic framework composites: Steering charge flow for enhanced visible-light photocatalysis[J]. Angewandte Chemie International Edition,2018,57:1103-1107. doi: 10.1002/anie.201711725
    [11] WANG Q, GAO Q Y, AL-ENIZI A M, et al. Recent advances in MOF-based photocatalysis: Environmental remediation under visible light[J]. Inorganic Chemistry Frontiers,2020,7:300-339. doi: 10.1039/C9QI01120J
    [12] LI Y, WANG X, WANG C, et al. S-TiO2/UiO-66-NH2 compo-site for boosted photocatalytic Cr(VI) reduction and bisphenol A degradation under LED visible light[J]. Journal of Hazardous Materials,2020,399:123085-123099. doi: 10.1016/j.jhazmat.2020.123085
    [13] HE J, XU Y, WANG W, et al. Ce(III) nanocomposites by partial thermal decomposition of Ce-MOF for effective phosphate adsorption in a wide pH range[J]. Chemical Engineering Journal,2020,379:122431. doi: 10.1016/j.cej.2019.122431
    [14] DU X, YI X, WANG P, et al. Enhanced photocatalytic Cr(VI) reduction and diclofenac sodium degradation under simulated sunlight irradiation over MIL-100(Fe)/g-C3N4 heterojunctions[J]. Chinese Journal of Catalysis,2019,40:70-79. doi: 10.1016/S1872-2067(18)63160-2
    [15] FU Y J, ZHANG K J, ZHANG Y, et al. Fabrication of visible-light-active MR/NH2-MIL-125(Ti) homojunction with boosted photocatalytic performance[J]. Chemical Engi-neering Journal,2021,412:128722-128733. doi: 10.1016/j.cej.2021.128722
    [16] MA Y, TANG Q, SUN W, et al. Assembling ultrafine TiO2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO2 to CH4 at a low concentration[J]. Applied Catalysis B: Environmental,2020,270:118856. doi: 10.1016/j.apcatb.2020.118856
  • 加载中
图(8)
计量
  • 文章访问数:  1020
  • HTML全文浏览量:  394
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-28
  • 修回日期:  2021-09-02
  • 录用日期:  2021-09-13
  • 网络出版日期:  2021-09-28
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回