留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低周反复荷载下预应力CFRP筋-型钢/混凝土偏拉构件抗裂性能试验

张鹏 花东升 邓宇

张鹏, 花东升, 邓宇. 低周反复荷载下预应力CFRP筋-型钢/混凝土偏拉构件抗裂性能试验[J]. 复合材料学报, 2022, 39(8): 4017-4027. doi: 10.13801/j.cnki.fhclxb.20210924.001
引用本文: 张鹏, 花东升, 邓宇. 低周反复荷载下预应力CFRP筋-型钢/混凝土偏拉构件抗裂性能试验[J]. 复合材料学报, 2022, 39(8): 4017-4027. doi: 10.13801/j.cnki.fhclxb.20210924.001
ZHANG Peng, HUA Dongsheng, DENG Yu. Experiment on crack resistance of prestressed CFRP tendons-steel reinforced concrete eccentrically tensioned members under low-cyclic reversed loading[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4017-4027. doi: 10.13801/j.cnki.fhclxb.20210924.001
Citation: ZHANG Peng, HUA Dongsheng, DENG Yu. Experiment on crack resistance of prestressed CFRP tendons-steel reinforced concrete eccentrically tensioned members under low-cyclic reversed loading[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4017-4027. doi: 10.13801/j.cnki.fhclxb.20210924.001

低周反复荷载下预应力CFRP筋-型钢/混凝土偏拉构件抗裂性能试验

doi: 10.13801/j.cnki.fhclxb.20210924.001
基金项目: 国家自然科学基金(51768008);中国博士后科学基金(2017M613273XB);广西自然科学基金(2019JJA160137)
详细信息
    通讯作者:

    花东升,硕士研究生,研究方向为新型复合材料及预应力型钢混凝土组合结构 E-mail: 854283267@qq.com

  • 中图分类号: TU375

Experiment on crack resistance of prestressed CFRP tendons-steel reinforced concrete eccentrically tensioned members under low-cyclic reversed loading

  • 摘要: 为研究预应力碳纤维增强树脂复合材料(CFRP)筋-型钢/混凝土(SRC)偏拉构件的抗裂性能,以不同的预应力张拉水平、偏心距、预应力筋类型及竖向拉力等参数制作了11个试件,并对其进行低周反复加载试验。结果表明:相比于普通SRC偏拉构件,预应力SRC偏拉构件的抗裂度和裂缝控制能力显著提升,其开裂荷载提高约1.5倍,抗裂性能与预应力张拉水平正相关,与偏心距负相关,预应力筋类型对开裂荷载影响不大。另外直径7 mm的预应力CFRP筋在控制构件裂缝数量方面强于直径15 mm的预应力精轧螺纹钢筋,适当增大竖向拉力可提高试件抗裂性能。参照现有理论和试验结果,推导出试件开裂荷载的计算公式,其计算结果与试验值吻合度较高。

     

  • 图  1  预应力 CFRP 筋-SRC试件设计详图

    Figure  1.  Detail design of prestressed CFRP tendons-SRC specimens

    图  2  试验加载装置

    Figure  2.  Test loading device

    图  3  预应力 CFRP 筋-SRC试件极限形态的裂缝分布

    Figure  3.  Crack distribution of the ultimate form of prestressed CFRP tendons-SRC specimens

    图  4  预应力CFRP筋-SRC试件荷载-裂缝宽度曲线

    Figure  4.  Load-crack width curves of prestressed CFRP tendons-SRC specimens

    图  5  预应力 CFRP 筋-SRC试件开裂荷载

    Figure  5.  Crack load of cracking load test value of prestressed CFRP tendons-SRC specimens

    T—Vertical force; Lp—Prestressed tension level; e—Eccentric distance

    图  6  预应力CFRP筋-SRC试件截面应力和应变分布

    Figure  6.  Cross section and strain distribution of prestressed CFRP tendons-SRC specimens

    h—Length of the section; b—Breadth of section; x—Distance from neutral axis to edge of tension side;as, ap, aa—Distance between tensile longitudinal bar, prestressed tendon, section steel and section edge; As, A's, As—Section area of compression and tension longitudinal reinforcement; Aa—Section area of section steel; Ap—Section area of prestressed reinforcement; εcr—Concrete cracking strain; εs, ε's, εaf, ε'af, ε'p, ε'c—When concrete cracks, tensile and compressive longitudinal bars, tensile and compressive flanges, prestressed tendons and the corresponding strains of concrete in the compressive zone; Ns, N's—Tension and pressure of longitudinal bars; Naf, N'af, Naw, N'aw—Tension and pressure of steel flanges and webs under tension and compression; N'p—Pressure of prestressed tendons; N'c—Pressure of concrete in compression zone; M—Cracking moment; T—Partial tensile load; e—Eccentric distance

    表  1  预应力碳纤维增强树脂复合材料(CFRP)筋-型钢/混凝土(SRC)试件主要设计参数

    Table  1.   Main design parameters of prestressed carbon fiber reinforced polymer (CFRP) tendons-steel reinforced concrete (SRC) specimens

    SpecimenPrestressed
    tension level/%
    Eccentricity/
    mm
    Vertical pull/
    kN
    Diameter of prestressed
    tendon/mm
    Type of prestressed
    tendon
    XPL-CFRP7-T1-P1/C 40 50 30 7 CFRP
    XPL-CFRP7-T1-P2/C 60 50 30 7 CFRP
    DPL-CFRP7-T1-P1/C 40 150 30 7 CFRP
    XPL-CFRP7-T2-P1/C 40 50 50 7 CFRP
    XPL-R15-T1-P1/C 40 50 30 15 Rebar
    XPL-R15-T1-P2/C 60 50 30 15 Rebar
    DPL-R15-T1-P1/C 40 150 30 15 Rebar
    DPL-R15-T1-P2/C 60 150 30 15 Rebar
    ZL-T1/C 0 0 30
    XPL-T1/C 0 50 30
    DPL-T1/C 0 150 30
    Notes: ZL—Axial tension member; XPL—Small eccentric member; DPL—Large eccentric member; CFRP7—CFRP tendons; R15—Finely-rolled threaded bars; T1 and T2—Eccentric tension of the specimens, which are 30 kN and 50 kN; P1 and P2—Tensioning level of the prestressed tendons, which are 40%fptk and 60%fptk; fptk—Ultimate tensile strength; C—C40 concrete.
    下载: 导出CSV

    表  2  钢材力学性能指标

    Table  2.   Mechanical properties of steel

    TypeYield
    strength/MPa
    Ultimate
    strength/MPa
    Modulus of
    elasticity/105 MPa
    Yield strain/10-6
    Profile steelQ235312.5447.52.01555
    Q345395.6556.62.01 978
    HRB400 steel barC6492.0608.02.12262
    C10475.0690.02.12086
    C12438.0618.02.02460
    下载: 导出CSV

    表  3  预应力筋力学性能指标

    Table  3.   Mechanical properties of prestressed tendons

    TypeDiameter/mmYield
    strength/MPa
    Ultimate
    strength/MPa
    Modulus of
    elasticity/105 MPa
    CFRP tendon7162419101.54
    Fine rolled steel bar1581710262.10
    Note: Yield strength of CFRP tendons is the nominal yield strength, which is the ultimate strength of 85%.
    下载: 导出CSV

    表  4  预应力 CFRP 筋-SRC试件开裂荷载试验值

    Table  4.   Cracking load test value of prestressed CFRP tendons-SRC specimens

    SpecimenPositive cracking
    load/kN
    Negative
    cracking
    load/kN
    Cracking
    load/kN
    XPL-CFRP7-T1-P1/C24.1712.0418.11
    XPL-CFRP7-T1-P2/C32.0810.1621.12
    DPL-CFRP7-T1-P1/C18.1014.0316.07
    XPL-CFRP7-T2-P1/C21.0418.1019.57
    XPL-R15-T1-P1/C26.1113.8419.98
    XPL-R15-T1-P2/C30.0112.1021.06
    DPL-R15-T1-P1/C23.0115.1019.06
    DPL-R15-T1-P2/C26.1013.7419.92
    ZL-T1/C8.8410.019.03
    XPL-T1/C4.2712.108.19
    DPL-T1/C2.0113.237.58
    Note: Cracking load is the average value of positive and negative cracking loads.
    下载: 导出CSV

    表  5  预应力筋总的预应力损失实测值

    Table  5.   Measured value of total prestress loss of prestressed tendon

    Specimenε0ε14σ14/MPa
    XPL-CFRP7-T1-P1/C52153994188.1
    XPL-CFRP7-T1-P2/C78806498212.8
    DPL-CFRP7-T1-P1/C52084076174.3
    XPL-CFRP7-T2-P1/C52314062180.1
    XPL-R15-T1-P1/C20671149192.8
    XPL-R15-T1-P2/C30872152196.3
    DPL-R15-T1-P1/C2 0321124190.6
    DPL-R15-T1-P2/C31032092212.4
    Notes: ε0—Microstrain value after tensioning; ε14—Microstrain value after 14 days; σ14—Total stress loss measured value.
    下载: 导出CSV

    表  6  预应力CFRP筋-SRC试件开裂荷载试验值与计算值比较

    Table  6.   Comparing the test value with the calculated value of cracking load of prestressed CFRP tendons-SRC specimens

    SpecimenTrival value
    /kN
    Calculated value
    /kN
    Trival value/Calculated value
    XPL-CFRP7-T1-P1/C18.1117.371.04
    XPL-CFRP7-T1-P2/C21.1219.141.10
    DPL-CFRP7-T1-P1/C16.0715.341.05
    XPL-CFRP7-T2-P1/C19.5721.760.90
    XPL-R15-T1-P1/C19.9818.421.08
    XPL-R15-T1-P2/C21.0619.691.07
    DPL-R15-T1-P1/C19.0617.721.08
    DPL-R15-T1-P2/C19.9217.971.11
    ZL-T1/C9.038.791.03
    XPL-T1/C8.197.441.10
    DPL-T1/C7.586.531.16
    下载: 导出CSV
  • [1] 尹世平, 华云涛, 徐世烺. FRP配筋混凝土结构研究进展及其应用[J]. 建筑结构学报, 2021, 42(1): 134-150.

    YIN Shiping, HUA Yuntao, XU Shilang. Research progress and application of FRP reinforced concrete structures[J]. Journal of Building Structures, 2021, 42(1): 134-150(in Chinese).
    [2] SELVACHANDRAN P, ANANDAKUMAR S, MUTHURAMU K L. Modified frosch crack width model for concrete beams prestressed with CFRP bars[J]. Polymers and Polymer Composites,2016,24(7):587-596. doi: 10.1177/096739111602400719
    [3] CAO Q, ZHOU J P, WU Z M, et al. Flexural behavior of prestressed CFRP reinforced concrete beams by two different tensioning methods[J]. Engineering Structures,2019,189:411-422.
    [4] 程东辉, 郑文忠. 无粘结CFRP筋部分预应力混凝土连续梁试验与分析[J]. 复合材料学报, 2008, 25(5):104-113. doi: 10.3321/j.issn:1000-3851.2008.05.018

    CHENG Donghui, ZHENG Wenzhong. Test and analysis of unbonded CFRP bars partially prestressed concrete continuous beams[J]. Acta Materiae Compositae Sinica,2008,25(5):104-113(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.05.018
    [5] 傅传国, 李玉莹, 梁书亭. 预应力型钢混凝土简支梁受弯性能试验研究[J]. 建筑结构学报, 2007, 28(3):62-73. doi: 10.3321/j.issn:1000-6869.2007.03.009

    FU Chuanguo, LI Yuying, LIANG Shuting. Experimental study on the flexural behavior of prestressed steel reinforced concrete beams[J]. Journal of Building Structures,2007,28(3):62-73(in Chinese). doi: 10.3321/j.issn:1000-6869.2007.03.009
    [6] 熊学玉, 高峰, 徐晓明. 预应力型钢混凝土结构理论研究[J]. 工业建筑, 2012, 42(4): 113-117.

    XIONG Xueyu, GAO Feng, XU Xiaoming. Theoretical research on prestressed steel concrete structure[J]. Industrial Building, 2012, 42(4): 113-117(in Chinese).
    [7] HAIJAR J F. Composite steel and concrete structural systems for seismic engineering[J]. Steel Construction,2008,58(5):703-723.
    [8] 薛建阳. 组合结构设计原理[M]. 北京: 中国建筑工业出版社, 2010: 99-101.

    XUE Jianyang. Design principles of composite structures[M]. Beijing: China Architecture & Building Press, 2010: 99-101(in Chinese).
    [9] 张鹏, 桂金洋, 邓宇, 等. 偏心受拉作用下预应力CFRP筋-型钢混凝土构件抗裂试验[J]. 复合材料学报, 2021, 38(3):920-931.

    ZHANG Peng, GUI Jinyang, DENG Yu, et al. Experimental study on crack resistance of prestressed CFRP reinforced steel concrete members under eccentric tension[J]. Acta Materiae Compositae Sinica,2021,38(3):920-931(in Chinese).
    [10] 邓宇, 武晓彤, 张鹏. 预应力型钢混凝土柱偏心受拉性能试验研究[J]. 建筑结构学报, 2019, 40(5):115-123.

    DENG Yu, WU Xiaotong, ZHANG Peng. Experimental study on eccentric tensile behavior of prestressed SRC columds[J]. Journal of Building Structures,2019,40(5):115-123(in Chinese).
    [11] 薛建阳, 马辉, 刘义. 反复荷载下型钢再生混凝土柱抗震性能试验研究[J]. 土木工程学报, 2014, 47(1):36-46.

    XUE Jianyang, MA Hui, LIU Yi. Experimental study on seismic performance of shaped steel recycled concrete columns under repeated loading[J]. China Civil Engi neering Journal,2014,47(1):36-46(in Chinese).
    [12] 李俊华, 王新堂, 薛建阳, 等. 低周反复荷载下型钢高强混凝土柱受力性能试验研究[J]. 土木工程学报, 2007, 40(7):11-18. doi: 10.3321/j.issn:1000-131x.2007.07.003

    LI Junhua, WANG Xintang, XUE Jianyang, et al. Experimental study on mechanical behavior of steel high-strength concrete column under low cyclic cyclic load[J]. China Civil Engineering Journal,2007,40(7):11-18(in Chinese). doi: 10.3321/j.issn:1000-131x.2007.07.003
    [13] 唐锦蜀, 韩文涛, 张堃, 等. 偏心受拉型钢-混凝土组合梁的受力性能试验研究[J]. 工业建筑, 2015, 45(8):170-174.

    TANG Jinshu, HAN Wentao, ZHANG Kun, et al. Experimental study on mechanical properties of eccentrically tensioned steel-concrete composite beams[J]. Industrial Building,2015,45(8):170-174(in Chinese).
    [14] 谭园, 薛伟辰, 王晓辉. 有粘结预应力FRP筋混凝土梁抗裂计算方法[J]. 建筑结构, 2008, 26(3):117-120.

    TAN Yuan, XUE Weichen, WANG Xiaohui. Calculation method of crack resistance of bonded prestressed FRP reinforced concrete beams[J]. Building Structure,2008,26(3):117-120(in Chinese).
    [15] 熊学玉, 高峰, 李亚明. 预应力型钢混凝土框架梁试验研究及抗裂度分析[J]. 工业建筑, 2011, 41(12):16-19.

    XIONG Xueyu, GAO Feng, LI Yaming. Experimental research and crack resistance analysis of prestressed steel concrete frame beams[J]. Industrial Building,2011,41(12):16-19(in Chinese).
    [16] 中华人民共和国住房和城乡建设部. 建筑抗震试验规程: JGJ/T101—2015[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for seismic test of buildings: JGJ/T101—2015[S]. Beijing: China Architecture and Building Press, 2015(in Chinese).
    [17] JOHN N, AMIN G, GAMIL T. Concrete flexural members reinforced with fiber reinforced polymer: Design for cracking and deformability[J]. Canadian Journal of Civil Engi-neering,2002,29(1):125-134. doi: 10.1139/l01-085
    [18] 邓宇, 孙仁中, 张鹏, 等. 拉-弯-剪复合作用下型钢混凝土柱抗震性能研究及损伤量化分析[J]. 振动与冲击, 2021, 40(4):195-204.

    DENG Yu, SUN Renzhong, ZHANG Peng, et al. Seismic behavior and damage quantification analysis of steel reinforced concrete columns under tension-bending-shear composite action[J]. Journal of Vibration and Shock,2021,40(4):195-204(in Chinese).
    [19] 杨勇, 薛亦聪, 于云龙. 部分预制装配型钢混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2019, 40(8):42-50.

    YANG Yong, XUE Yicong, YU Yunlong. Experimental study on seismic performance of partially precast steel concrete columns[J]. Journal of Building Structures,2019,40(8):42-50(in Chinese).
    [20] 薛建阳, 马辉. 低周反复荷载下型钢再生混凝土短柱抗震性能试验研究[J]. 工程力学, 2013, 30(12):123-131. doi: 10.6052/j.issn.1000-4750.2012.08.0571

    XUE Jianyang, MA Hui. Experimental study on seismic performance of shaped steel recycled concrete short columned under low cyclic repeated load[J]. Engineering Mechanics,2013,30(12):123-131(in Chinese). doi: 10.6052/j.issn.1000-4750.2012.08.0571
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  592
  • HTML全文浏览量:  261
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 修回日期:  2021-09-07
  • 录用日期:  2021-09-13
  • 网络出版日期:  2021-09-24
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回