留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫酸盐侵蚀下掺稻壳灰混凝土的劣化性能及损伤模型

姚韦靖 刘宜思 庞建勇 马芹永

姚韦靖, 刘宜思, 庞建勇, 等. 硫酸盐侵蚀下掺稻壳灰混凝土的劣化性能及损伤模型[J]. 复合材料学报, 2022, 39(10): 4813-4823. doi: 10.13801/j.cnki.fhclxb.20210923.001
引用本文: 姚韦靖, 刘宜思, 庞建勇, 等. 硫酸盐侵蚀下掺稻壳灰混凝土的劣化性能及损伤模型[J]. 复合材料学报, 2022, 39(10): 4813-4823. doi: 10.13801/j.cnki.fhclxb.20210923.001
YAO Weijing, LIU Yisi, PANG Jianyong, et al. Performance degradation and damage model of concrete incorporating rice husk ash under sulfate attack[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4813-4823. doi: 10.13801/j.cnki.fhclxb.20210923.001
Citation: YAO Weijing, LIU Yisi, PANG Jianyong, et al. Performance degradation and damage model of concrete incorporating rice husk ash under sulfate attack[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4813-4823. doi: 10.13801/j.cnki.fhclxb.20210923.001

硫酸盐侵蚀下掺稻壳灰混凝土的劣化性能及损伤模型

doi: 10.13801/j.cnki.fhclxb.20210923.001
基金项目: 中国博士后科学基金面上资助(2020M681974);安徽省高等学校自然科学研究重点项目(KJ2020A0297)
详细信息
    通讯作者:

    庞建勇,博士,教授,博士生导师,研究方向为水泥混凝土材料 E-mail:pangjyong@163.com

  • 中图分类号: TU528

Performance degradation and damage model of concrete incorporating rice husk ash under sulfate attack

  • 摘要: 为证实稻壳灰(RHA)对混凝土硫酸盐侵蚀性能的改善作用,优选出掺RHA混凝土配比,并与普通混凝土(NC)对比,研究质量分数5wt%的Na2SO4溶液侵蚀270天内,表观现象、抗压、抗拉强度、有效孔隙率、动弹性模量等性能指标劣化规律,利用SEM观察硫酸盐侵蚀前后试件微观结构变化。结果表明:随侵蚀时间增加,混凝土试件逐渐局部剥落、体积膨胀;抗压、抗拉强度先提高后急剧下降,有效孔隙率先降低后提高,相对动弹性模量先提高后下降;微观分析表明混凝土水化产物与侵蚀介质反应生成钙矾石和石膏,填充内部孔隙,而随侵蚀进行膨胀性钙矾石与石膏超过内部抗拉强度产生裂隙,引起结构膨胀破坏、力学性能劣化。而RHA掺入混凝土生成水化硅酸钙凝胶,提高材料强度和耐腐蚀性,各阶段掺RHA混凝土劣化程度均优于NC。最终建立损伤本构模型,并与实测值对比,准确性较高。

     

  • 图  1  稻壳灰(RHA)实拍照片 (a) 及微观形貌图像 (b)

    Figure  1.  Picture (a) and microscopic structure (b) of rice husk ash (RHA)

    图  2  胶凝材料粒径分布区间

    Figure  2.  Size distribution interval of cementitious material

    图  3  硫酸盐侵蚀后9%RHA/NC表观现象

    Figure  3.  Apparent phenomenon of 9%RHA/NC specimen after sulfate attack

    图  4  9%RHA/NC不同侵蚀时间抗压强度侵蚀系数变化

    Figure  4.  Change of compressive strength corrosion coefficient of 9%RHA/NC with different corrosion time

    图  5  9%RHA/NC不同侵蚀时间抗拉强度侵蚀系数变化

    Figure  5.  Change of tensile strength corrosion coefficient of 9%RHA/NC with different corrosion time

    图  6  9%RHA/NC不同侵蚀时间有效孔隙率变化

    Figure  6.  Change of effective porosity of 9%RHA/NC with different corrosion time

    图  7  9%RHA/NC不同侵蚀时间相对动弹性模量变化

    Figure  7.  Change of relative dynamic elasticity modulus of 9%RHA/NC with different corrosion time

    图  8  硫酸盐侵蚀后NC的微观形貌

    Figure  8.  Microscopic structures of NC after sulfate corrosion

    图  9  硫酸盐侵蚀后9%RHA/NC微观形貌

    Figure  9.  Microscopic structures of 9%RHA/NC after sulfate corrosion

    图  10  9%RHA/NC弹性模量损伤演化方程拟合曲线

    Figure  10.  Fitting curves of damage evolution equation of elastic modulus of 9%RHA/NC

    图  11  9%RHA/NC抗压强度损伤本构模型预测值与试验值比较

    Figure  11.  Comparison of the predicted value by damage constitute model and test value of compressive strength of 9%RHA/NC

    表  1  RHA的化学成分占比

    Table  1.   Chemical composition of RHA

    CompositionSiO2K2OCaOFe2O3MgOIgnition loss
    Content/wt%85.62.512.440.560.518.38
    下载: 导出CSV

    表  2  混凝土配合比

    Table  2.   Concrete mixture ratio (kg·m−3)

    Concrete numberCement materialGravelSandWaterWater reducer
    CementRHA
    NC 368 0 1202 633 210 2.1
    3%RHA/NC 357 11 1202 633 219 2.1
    6%RHA/NC 346 22 1202 633 228 2.2
    9%RHA/NC 335 33 1202 633 237 2.3
    12%RHA/NC 324 44 1202 633 246 2.4
    15%RHA/NC 313 55 1202 633 255 2.5
    Notes: NC—Normal concrete; x%RHA/NC—Rich husk ash concrete with rich husk ash (mass ratio to cementitious material) of x%, respectively.
    下载: 导出CSV

    表  3  混凝土力学性能测试结果

    Table  3.   Concrete mechanical properties test results

    Concrete numberSlump/mmCompressive strength/MPaSplitting tensile strength/MPa
    7 days28 days7 days28 days
    NC16826.232.42.73.5
    3%RHA/NC17027.034.22.93.9
    6%RHA/NC16528.236.83.04.2
    9%RHA/NC17526.742.32.84.6
    12%RHA/NC18024.740.72.44.1
    15%RHA/NC17820.835.31.83.3
    下载: 导出CSV

    表  4  不同侵蚀时间下混凝土的固有属性mF

    Table  4.   Concrete inherent attribute m and F values under different erosion time

    Erosion
    time/days
    NC9%RHA/NC
    mF/10−3mF/10−3
    00.351.170.391.68
    300.351.200.401.77
    600.361.270.421.97
    900.381.500.422.04
    1200.371.470.432.10
    1500.351.220.422.02
    1800.341.000.401.80
    2100.320.810.381.58
    2400.300.670.371.43
    2700.300.620.351.23
    下载: 导出CSV
  • [1] ASADI H, GHORBANI M, REZAEI-RASHTI M, et al. Application of rice husk biochar for achieving sustainable agriculture and environment[J]. Rice Science,2021,28(4):325-343. doi: 10.1016/j.rsci.2021.05.004
    [2] 郑文忠, 邹梦娜, 王英. 碱激发胶凝材料研究进展[J]. 建筑结构学报, 2019, 40(1):28-39. doi: 10.14006/j.jzjgxb.2019.01.003

    ZHENG Wenzhong, ZOU Mengna, WANG Ying. Literature review of alkali-activated cementitious materials[J]. Journal of Building Structures,2019,40(1):28-39(in Chinese). doi: 10.14006/j.jzjgxb.2019.01.003
    [3] CHANDRASEKHAR S, SATYANARAYANA K G, PRAMADA P N, et al. Processing, properties and applications of reactive silica from rice husk—An overview[J]. Journal of Materials Science,2003,38:3159-3168. doi: 10.1023/A:1025157114800
    [4] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9):9003-9011.

    WANG Zhiwen, LI Bixiong. Research progress on application of rice husk ash in cement and concrete[J]. Materials Reports,2020,34(9):9003-9011(in Chinese).
    [5] 欧阳东, 陈楷. 低温焚烧稻壳灰的显微结构及其化学活性[J]. 硅酸盐学报, 2003, 31(11):1121-1124. doi: 10.3321/j.issn:0454-5648.2003.11.020

    OUYANG Dong, CHEN Kai. Microstructure and chemical activity of rice husk ash burned at low temperature[J]. Journal of the Chinese Ceramic Society,2003,31(11):1121-1124(in Chinese). doi: 10.3321/j.issn:0454-5648.2003.11.020
    [6] BIE R S, SONG X F, LIU Q Q, et al. Studies on effects of burning conditions and rice husk ash (RHA) blending amount on the mechanical behavior of cement[J]. Cement and Concrete Composites,2015,55:162-168. doi: 10.1016/j.cemconcomp.2014.09.008
    [7] 冯庆革, 杨义, 童张法, 等. 掺高活性稻壳灰混凝土的抗冻融特性[J]. 硅酸盐学报, 2008, 36(S1):136-139.

    FENG Qingge, YANG Yi, TONG Zhangfa, et al. Freezing and thawing resistance of concrete incorporating highly active rice husk ash[J]. Journal of the Chinese Ceramic Society,2008,36(S1):136-139(in Chinese).
    [8] 余其俊, 赵三银, 冯庆革, 等. 活性稻壳灰对混凝土强度和耐久性的影响[J]. 武汉理工大学学报, 2003, 25(2):15-19. doi: 10.3321/j.issn:1671-4431.2003.02.005

    YU Qijun, ZHAO Sanyin, FENG Qingge, et al. The effect of highly reactive rice husk ash on the strength and durability of concrete[J]. Journal of Wuhan University of Technology,2003,25(2):15-19(in Chinese). doi: 10.3321/j.issn:1671-4431.2003.02.005
    [9] CHINDAPRASIRT P, KANCHANDA P, SATHONSAOWAPHAK A, et al. Sulfate resistance of blended cements containing fly ash and rice husk ash[J]. Construction and Building Materials,2007,21(6):1356-1361. doi: 10.1016/j.conbuildmat.2005.10.005
    [10] 刘春, 何智海. 稻壳灰对硬化机制砂混凝土性能的影响[J]. 硅酸盐通报, 2016, 35(8):2543-2547.

    LIU Chun, HE Zhihai. Effect of rice ash on the perfor-mance of concrete with manufactured-sand[J]. Bulletin of the Ceramic Society,2016,35(8):2543-2547(in Chinese).
    [11] 叶光, NGUYEN V T. 稻壳灰抑制超高性能混凝土的自收缩机理分析[J]. 硅酸盐学报, 2012, 40(2):212-216. doi: 10.14062/j.issn.0454-5648.2012.02.006

    YE Guang, NGUYEN V T. Mitigation of autogenous shrinkage of ultra-high performance concrete by rice husk ash[J]. Journal of the Chinese Ceramic Society,2012,40(2):212-216(in Chinese). doi: 10.14062/j.issn.0454-5648.2012.02.006
    [12] GENCEL O, BENLI A, BAYRAKTAR O Y, et al. Effect of waste marble powder and rice ash on the microstructural, physico-mechanical and transport properties of foam concretes exposed to high temperatures and freeze-thaw cycles[J]. Construction and Building Materials,2021,291:123374. doi: 10.1016/j.conbuildmat.2021.123374
    [13] 胡维新, 黄伟, 秦鸿根. 硅藻土、超细稻壳灰、硅灰对双重多孔混凝土性能的影响[J]. 工业建筑, 2014, 44(10):113-116.

    HU Weixin, HUANG Wei, QIN Honggen. Effect of diatomite, ultrafine rice husk ash, and silicon ash on the performance of dual porous concrete[J]. Industrial Construction,2014,44(10):113-116(in Chinese).
    [14] 高英力. 粉煤灰高强轻集料混凝土性能及细观结构[M]. 长沙: 中南大学出版社, 2016.

    GAO Yingli. Performance and meso-structure of fly ash high strength lightweight aggregate concrete[M]. Changsha: Central South University Press, 2016(in Chinese).
    [15] 李华, 孙伟, 左晓宝. 矿物掺合料改善水泥基材料抗硫酸盐侵蚀性能的微观分析[J]. 硅酸盐学报, 2012, 40(8):1119-1126.

    LI Hua, SUN Wei, ZUO Xiaobao. Effect of mineral admixtures on sulfate attack resistance of cement based materials[J]. Journal of the Chinese Society,2012,40(8):1119-1126(in Chinese).
    [16] YOSHIA N, MATSUNAML Y, NAGAYAMA M, et al. Salt weathering in residential concrete foundations exposed to sulfate-bearing ground[J]. Journal of Advanced Concrete Technology,2010,8(2):121-134. doi: 10.3151/jact.8.121
    [17] 刘曙光, 赵晓明, 张菊, 等. 聚乙烯醇纤维增强水泥基复合材料在长期浸泡作用下抗硫酸盐侵蚀性能[J]. 复合材料学报, 2013, 30(6):60-66. doi: 10.3969/j.issn.1000-3851.2013.06.009

    LIU Shuguang, ZHAO Xiaoming, ZHANG Ju, et al. Resistance of polyvinyl alcohol fiber reinforced cementitious composites to sulfate attack under long-term immersion[J]. Acta Materiae Compositae Sinica,2013,30(6):60-66(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.06.009
    [18] 张晓佳, 张高展, 孙道胜, 等. 水泥基材料硫酸盐侵蚀机理的研究进展[J]. 材料导报A: 综述篇, 2018, 32(4):1174-1180.

    ZHANG Xiaojia, ZHANG Gaozhan, SUN Daosheng, et al. Progress of the mechanism of sulfate attack on cement-based materials[J]. Materials Reports A: Review,2018,32(4):1174-1180(in Chinese).
    [19] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [20] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specification for mix proportion design of ordinary concrete: JGJ 55—2011[J]. Beijing: China Architecture & Building Press, 2011(in Chinese).
    [21] 刘宜思, 庞建勇, 姜平伟, 等. 电厂稻壳灰水泥砂浆流动度及力学性能研究[J]. 安徽理工大学学报(自然科学版), 2020, 40(6):54-60.

    LIU Yisi, PANG Jianyong, JIANG Pingwei, et al. Study on the fluidity and mechanical properties of cement mortar added with rice husk ash from power plant[J]. Journal of Anhui University of Science and Technology (Natural Science),2020,40(6):54-60(in Chinese).
    [22] 中华人民共和国住房和城乡建设部. 混凝土力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [23] 中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test method of performance on ordinary fresh concrete: GB/T 50080—2016[S]. Beijing: China Architectural & Building Press, 2016(in Chinese).
    [24] 王佳雷, 肖佳, 郭明磊, 等. 活性稻壳灰改善水泥-石灰石粉胶凝材料强度及作用机理研究[J]. 建筑材料学报, 2020, 23(5):1001-1007. doi: 10.3969/j.issn.1007-9629.2020.05.002

    WANG Jialei, XIAO Jia, GUO Minglei, et al. Impact of active rice husk ash on improvement of the strength of cement-ground limestone cementitious materials and its mecha-nism[J]. Journal of Building Materials,2020,23(5):1001-1007(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.05.002
    [25] 高英力, 龙杰, 刘赫, 等. 硫酸盐作用下粉煤灰轻骨料混凝土力学性能及微观结构[J]. 建筑材料学报, 2014, 17(3):389-395. doi: 10.3969/j.issn.1007-9629.2014.03.004

    GAO Yingli, LONG Jie, LIU He, et al. Mechanical perfor-mance and microstructure of fly ash lightweight aggregate concrete under sulfate attack[J]. Journal of Building Materials,2014,17(3):389-395(in Chinese). doi: 10.3969/j.issn.1007-9629.2014.03.004
    [26] 杨礼明, 余红发, 麻海燕, 等. 混凝土在碳化和干湿循环作用下的抗硫酸盐腐蚀性能[J]. 复合材料学报, 2012, 29(5):127-133.

    YANG Liming, YU Hongfa, MA Haiyan, et al. Resistance of concrete to magnesium sulfate attack under combined action of carbonation and dry-wet cycles[J]. Acta Materiae Compositae Sinica,2012,29(5):127-133(in Chinese).
    [27] 张萌. 硫酸盐腐蚀对混凝土微观特征的影响研究[J]. 硅酸盐通报, 2020, 39(4):1160-1165.

    ZHANG Meng. Influence of sulfate corrosion on microstructure characteristics of concrete[J]. Bulletin of Chinese Ceramic Society,2020,39(4):1160-1165(in Chinese).
    [28] 刘娟红, 宋少民, 高萌. 水泥基材料在腐蚀环境中生成碳硫硅钙石的机理研究[J]. 建筑材料学报, 2017, 20(6):846-853. doi: 10.3969/j.issn.1007-9629.2017.06.004

    LIU Juanhong, SONG Shaomin, GAO Meng. Mechanism of formation of thaumasite in cement-based materials in corrosive environment[J]. Journal of Building Materials,2017,20(6):846-853(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.06.004
    [29] 李庆斌. 混凝土断裂损伤力学[M]. 北京: 科学出版社, 2021.

    LI Qingbin. Fracture and damage mechanics of concrete[M]. Beijing: Science Press, 2021(in Chinese).
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  412
  • HTML全文浏览量:  179
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-16
  • 修回日期:  2021-09-06
  • 录用日期:  2021-09-13
  • 网络出版日期:  2021-09-24
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回