留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

梯度结构对竹束纤维复合材料界面失效的影响

顾少华 陈季荷 张文福 王翠翠 王戈 程海涛

顾少华, 陈季荷, 张文福, 等. 梯度结构对竹束纤维复合材料界面失效的影响[J]. 复合材料学报, 2022, 39(8): 4065-4073. doi: 10.13801/j.cnki.fhclxb.20210917.003
引用本文: 顾少华, 陈季荷, 张文福, 等. 梯度结构对竹束纤维复合材料界面失效的影响[J]. 复合材料学报, 2022, 39(8): 4065-4073. doi: 10.13801/j.cnki.fhclxb.20210917.003
GU Shaohua, CHEN Jihe, ZHANG Wenfu, et al. Effect of gradient structure on the interface failure of bamboo bundle fiber composite material[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4065-4073. doi: 10.13801/j.cnki.fhclxb.20210917.003
Citation: GU Shaohua, CHEN Jihe, ZHANG Wenfu, et al. Effect of gradient structure on the interface failure of bamboo bundle fiber composite material[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4065-4073. doi: 10.13801/j.cnki.fhclxb.20210917.003

梯度结构对竹束纤维复合材料界面失效的影响

doi: 10.13801/j.cnki.fhclxb.20210917.003
基金项目: 建筑用竹质复合覆面板及模块构件加工与性能研究(1632021002)
详细信息
    通讯作者:

    程海涛,博士,研究员,博士生导师,研究方向为竹纤维复合材料  E-mail: htcheng@icbr.ac.cn

  • 中图分类号: TB332

Effect of gradient structure on the interface failure of bamboo bundle fiber composite material

  • 摘要: 为研究竹材梯度结构对竹束纤维复合材料性能的影响,以竹束纤维(BF)为增强相,环氧树脂-甲基四氢邻苯二甲酸酐(EP-MeTHPA)体系为基体相,采用热压成型制备竹束纤维增强环氧树脂-甲基四氢邻苯二甲酸酐复合材料体系(BF/EP-MeTHPA)。通过改变BF单元—竹青侧束纤维(BF-GS)和竹黄侧束纤维(BF-YS),研究梯度结构对BF/EP-MeTHPA界面失效的影响。在分析复合材料力学性能的基础上,通过动态热机械分析(DMA)、原位加载、FTIR等纳、微观试验手段,对纤维-树脂结合状态、界面微区力学、热分析和宏观力学表征等进行研究。实验结果表明,由于BF-GS中纤维含量与强度较高,在EP-MeTHPA体系中的增强效果与分布均匀性优于BF-YS,弯曲呈现韧性阶梯状破坏;但其浸润性与界面性能却低于竹黄侧束纤维增强环氧树脂-甲基四氢邻苯二甲酸酐复合材料体系(BF-YS/EP-MeTHPA)。通过对竹材结构进行观察,发现BF-YS残留了更多的薄壁细胞,粗糙表面有利于EP的浸润与黏附,因此在接触角测试中,BF-YS的浸润力约为BF-GS的60%。FTIR显示,MeTHPA可与BF羟基反应生成新的酯键,使得BF与EP-MeTHPA体系形成化学键,提高界面稳定性,而BF-YS中非结晶区的暴露使其极性更强(106.5 mN/m),各特征峰相对面积变化量也大于BF-GS,更容易形成化学键合,其稳定性也会提高。

     

  • 图  1  竹束纤维(BF)制备工艺:(a) 竹样;(b) 竹条;(c) 竹麻;(d) 竹青侧束纤维(BF-GS);(e) 竹黄侧束纤维(BF-YS);(f) 竹材横截面结构;竹青侧 (g) 和竹黄侧 (h) 的SEM图像

    Figure  1.  Preparation process of bamboo bundle fiber (BF): (a) Bamboo samples; (b) Bamboo strips; (c) Bamboo fiber bundles; (d) Yellow side (BF-YS); (e) Green side bundle fiber (BF-GS); (f) Bamboo cross-sectional structure; SEM images of GS (g) and YS (h)

    图  2  环氧树脂-甲基四氢邻苯二甲酸酐(EP-MeTHPA)体系固化反应

    Figure  2.  Principle curing mechanism of epoxy resin-methyl tetrahydrophthalic anhydride (EP-MeTHPA)

    图  3  垂直于BF方向的BF/EP-MeTHPA力学加载分析及其SEM图像:((a)~(d)) BF-GS/EP-MeTHPA;((e)~(h)) BF-YS/EP-MeTHPA

    Figure  3.  In-situ mechanical loading analysis of BF/EP-MeTHPA perpendicular to the direction of BF and SEM images: ((a)-(d)) BF-GS/EP-MeTHPA; ((e)-(h)) BF-YS/EP-MeTHPA

    图  4  平行于BF方向的BF/EP-MeTHPA力学加载分析:((a)~(d)) BF-GS/EP-MeTHPA;((e)~(h)) BF-YS/EP-MeTHPA

    Figure  4.  In-situ mechanical loading analysis of BF/EP-MeTHPA parallel to the direction of BF: ((a)-(d)) BF-GS/EP-MeTHPA; ((e)-(h)) BF-YS/EP-MeTHPA

    图  5  BF/EP-MeTHPA动载弯曲性能:(a) BF/EP-MeTHPA的损耗因子;(b) EP-MeTHPA的损耗因子;(c) BF/EP-MeTHPA的界面性能参数

    Figure  5.  Dynamic load bending performance of BF/EP-MeTHPA:(a) Loss factor of BF/EP-MeTHPA; (b) Loss factor of EP-MeTHPA; (c) Interface performance parameters of BF/EP-MeTHPA

    图  6  EP-MeTHPA体系条件下BF润湿力变化

    Figure  6.  Change of wetting power of BF under the system EP-MeTHPA

    Ff—Falling force; θF—Falling angle; Fr—Rising force; θR—Rising angle

    图  7  MeTHPA处理BF前后的FTIR图谱:(a) BF-GS;(b) BF-YS

    Figure  7.  FTIR spectra of BF before and after treatment with MeTHPA: (a) BF-GS; (b) BF-YS

    图  8  BF/EP-MeTHPA体系固化反应

    Figure  8.  Principle of curing reaction of BF/EP-MeTHPA

    图  9  BF/EP-MeTHPA的三维网络结构:(a) 化学键;(b) 体系模型

    Figure  9.  Three-dimensional network structure of BF/EP-MeTHPA: (a) Chemical bond; (b) System model

    表  1  BF/EP-MeTHPA种类与组分质量百分比

    Table  1.   Types and mass percentage of BF/EP-MeTHPA composites

    TypesEP-MeTHPA/wt%BF-YS/wt%BF-GS/wt%
    EP-MeTHPA 100 0 0
    BF-YS/EP-MeTHPA 55 45 0
    BF-GS/EP-MeTHPA 55 0 45
    下载: 导出CSV

    表  2  BF/EP-MeTHPA的弯曲力学性能

    Table  2.   Bending properties of BF/EP-MeTHPA

    TypesModulus of elasticity/GPaModulus of rupture/MPa
    EP-MeTHPA 3.9±0.4 (A) 54.8±8.1 (A)
    BF-YS/EP-MeTHPA 18.9±2.7 (B) 304.8±31.4 (A)
    BF-GS/EP-MeTHPA 23.7±2.0 (C) 356.1±45.0 (B)
    Note: There are significant differences at the 0.05 level of Duncan test and groups with the same letters do not differ statistically.
    下载: 导出CSV

    表  3  BF接触角与表面能

    Table  3.   Contact angle and surface energy of BF

    Contact angle/(°)Surface tension/
    (mN·m−1)
    WaterEthylene glycolPolar partDisperse part
    BF-GS 39.85 28.54 91.9 0.2
    BF-YS 34.05 34.21 106.5 0.7
    下载: 导出CSV

    表  4  MeTHPA处理BF前后的FTIR图谱特征峰面积比

    Table  4.   FTIR spectroscopy characteristic peak area ratio before and after treatment of BF with MeTHPA

    Area ratio—CH2—C=O—OH
    Range 3010-2810 1680-1790 3680-3010
    BF-GS 17.89 0.65(0.04) 267.62(14.96)
    BF-GS/MeTHPA 12.85 4.71(0.37) 189.38(14.74)
    BF-YS 17.71 0.34(0.02) 241.25(13.63)
    BF-YS/MeTHPA 21.42 12.31(0.58) 204.43(9.55)
    下载: 导出CSV
  • [1] ZHUO P S, CHANG H F, SHENG X H, et al. Tensile properties of moso bamboo (phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure[J]. Wood Science and Technology,2010,44(4):655-666. doi: 10.1007/s00226-009-0290-1
    [2] WANG C, YU X, SMITH L M, et al. Interfacial properties of bamboo fiber-reinforced high-density polyethylene composites by different methods for adding nano calcium carbonate[J]. Polymers,2017,9(11):587. doi: 10.3390/polym9110587
    [3] HUANG J K, YOUNG W B. The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites[J]. Composites,2019,166(1):272-283.
    [4] ULRIKE G K, HAO B, EDUARDO S, et al. Bioinspired structural materials[J]. Nature Materials,2015,14(1):23-36. doi: 10.1038/nmat4089
    [5] WANG X, YUAN Z, ZHAN X, et al. Multi-scale characterization of the thermal-mechanically isolated bamboo fiber bundles and its potential application on engineered composites[J]. Construction and Building Materials,2020,262(10):120866.
    [6] LEE C H, YANG T H, CHENG Y W, et al. Effects of thermal modification on the surface and chemical properties of moso bamboo[J]. Construction and Building Materials,2018,178:59-71. doi: 10.1016/j.conbuildmat.2018.05.099
    [7] WEI X, ZHOU H Y, CHEN F M, et al. Bending flexibility of moso bamboo (phyllostachys edulis) with functionally graded structure[J]. Materials (Basel, Switzerland),2019,12(12):2007. doi: 10.3390/ma12122007
    [8] AK H P S, BHAT I, JAWAID M, et al. Bamboo fibre reinforced biocomposites: A review[J]. Materials and Design,2012,42:353-368. doi: 10.1016/j.matdes.2012.06.015
    [9] 江泽慧, 孙正军, 任海青. 先进生物质复合材料在风电叶片中的应用[J]. 复合材料学报, 2006, 23(3): 127-129.

    JIANG Zehui, SUN Zhengjun, REN Haiqing. Application of advanced bio-composites in wind blades[J]. Acta Materiae Compositae Sinica, 2006, 23(3): 127-129(in Chinese).
    [10] 孙正军, 程强, 江泽慧. 竹质工程材料的制造方法与性能[J]. 复合材料学报, 2008, 25(1):80-83. doi: 10.3321/j.issn:1000-3851.2008.01.014

    SUN Zhengjun, CHENG Qiang, JIANG Zehui. Processing and properties of engineering bamboo products[J]. Acta Materiae Compositae Sinica,2008, 25(1):80-83(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.014
    [11] KU H, WANG H, PATTARACHAIYAKOOP N, et al. A review on the tensile properties of natural fiber reinforced polymer composites[J]. Composites Part B: Engineering,2011,42(4):856-873. doi: 10.1016/j.compositesb.2011.01.010
    [12] KABIR M M, WANG H, LAU K T, et al. Chemical treatments on plant-based natural fiber reinforced polymer compo-sites: An overview[J]. Composites Part B: Engineering,2012,43(7):2883-2892. doi: 10.1016/j.compositesb.2012.04.053
    [13] FIORE V, BELLA G D, VALENZA A. The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites[J]. Composites Part B: Engineering,2015,68(1):14-21.
    [14] MITTALV, SAINI R, SINHA S. Natural fiber-mediated epoxy composites—A review[J]. Composites Part B: Engi-neering,2016,99(8):425-435. doi: 10.1016/j.compositesb.2016.06.051
    [15] SAHA P, MANNA S, CHOWDHURY S R, et al. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment[J]. Bioresource Technology,2010,101(9):3182-3187. doi: 10.1016/j.biortech.2009.12.010
    [16] 中国国家标准化管理委员会. 人造板及饰面人造板理化性能试验方法: GB/T17657—2013[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration of the People’s Republic of China. Test methods of evaluating the properties of wood-based panels and surface decorated wood-based panels: GB/T 17657—2013[S]. Beijing: China Standards Press, 2013(in Chinese).
    [17] 王戈, 陈红, 余雁, 等. 竹纤维细胞水平的物理力学性能精细表征技术[J]. 北京林业大学学报, 2011, 33(4):143-148.

    WANG Ge, CHEN Hong, YU Yan, et al. Fine characterization techniques of physical and mechanical properties of bamboo fiber in cell level[J]. Journal of Beijing Forestry University,2011,33(4):143-148(in Chinese).
    [18] American Society for Testing and Materials International. Standard test method for glass transition temperature (DMA Tg) of polymer matrix composites by dynamic mechanical analysis (DMA): D7028-07[S]. West Conshohocken: American Society for Testing and Materials, 2008.
    [19] 王翠翠, 程海涛, 羡瑜, 等. 纳米CaCO3增强竹浆纤维/环氧树脂复合材料的动态力学性能[J]. 农业工程学报, 2017, 3(6):281-287. doi: 10.11975/j.issn.1002-6819.2017.06.036

    WANG Cuicui, CHENG Haitao, XIAN Yu, et al. Improving dynamic mechanical property of bamboo pulp fiber reinforced epoxy resin composite treated by nano calcium carbonate[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,3(6):281-287(in Chinese). doi: 10.11975/j.issn.1002-6819.2017.06.036
    [20] 程海涛, 王戈, 谌晓梦, 等. 光学法和力学法测定单根纤维接触角及相关性分析[J]. 林产工业, 2013, 40(1):49-51. doi: 10.3969/j.issn.1001-5299.2013.01.014

    CHENG Haitao, WANG Ge, SHEN Xiaomeng, et al. Single fiber contact angle measured by different methods and correlation analysis[J]. China Forest Products Industry,2013,40(1):49-51(in Chinese). doi: 10.3969/j.issn.1001-5299.2013.01.014
    [21] HODGSON K T, BERG J C. Dynamic wettability properties of single wood pulp fibers and their relationship to absorbency[J]. Wood & Fiber Science,1988,20(1):3-17.
    [22] FUENTES C A, TRAN L Q, DUPONT G C, et al. Wetting behaviour and surface properties of technical bamboo fibres[J]. Colloid Surface A,2011,380(1-3):89-99.
    [23] QIU S, FUENTES C A, ZHANG D X, et al. Wettability of a single carbon fiber[J]. Langmuir,2016,32(38):9697-9705. doi: 10.1021/acs.langmuir.6b02072
    [24] XIE Y J, CALLUM A S H, XIAO Z F, et al. Silane coupling agents used for natural fiber/polymer composites: A review[J]. Composites Part A: Applied Science and Manufacturing,2010,41(7):806-819. doi: 10.1016/j.compositesa.2010.03.005
    [25] PAUL S A, JOSEPH K, MATHEW G D G, et al. Influence of polarity parameters on the mechanical properties of composites from polypropylene fiber and short banana fiber[J]. Composites Part A: Applied Science and Manufacturing,2010,41(10):1380-1387. doi: 10.1016/j.compositesa.2010.04.015
    [26] FUENTES C A, TRAN L, HELLEMONT M V, et al. Effect of physical adhesion on mechanical behaviour of bamboo fibre reinforced thermoplastic composites[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects,2013,418:7-15.
    [27] KASIVISWANATHAN S, SANTHANAM K, KUMARAVEL A. Evaluation of mechanical properties of natural hybrid fibers, reinforced polyester composite materials[J]. Carbon-Science and Technology,2015,7(4):43-49.
    [28] XIONG Z, CHAO L, MA S, et al. The properties of poly(lactic acid)/starch blends with a functionalized plant oil: Tung oil anhydride[J]. Carbohydrate Polymers,2013,95(1):77-84. doi: 10.1016/j.carbpol.2013.02.054
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  644
  • HTML全文浏览量:  379
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-27
  • 修回日期:  2021-08-27
  • 录用日期:  2021-09-06
  • 网络出版日期:  2021-09-17
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回