留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯纳米片对Ni-W-ZrO2复合镀层性能的影响

张兰 詹卓一 成德森 马会中

张兰, 詹卓一, 成德森, 等. 石墨烯纳米片对Ni-W-ZrO2复合镀层性能的影响[J]. 复合材料学报, 2022, 39(8): 4074-4084. doi: 10.13801/j.cnki.fhclxb.20210916.007
引用本文: 张兰, 詹卓一, 成德森, 等. 石墨烯纳米片对Ni-W-ZrO2复合镀层性能的影响[J]. 复合材料学报, 2022, 39(8): 4074-4084. doi: 10.13801/j.cnki.fhclxb.20210916.007
ZHANG Lan, ZHAN Zhuoyi, CHENG Desen, et al. Effect of graphene nanosheets on the properties of Ni-W-ZrO2 composite coating[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4074-4084. doi: 10.13801/j.cnki.fhclxb.20210916.007
Citation: ZHANG Lan, ZHAN Zhuoyi, CHENG Desen, et al. Effect of graphene nanosheets on the properties of Ni-W-ZrO2 composite coating[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4074-4084. doi: 10.13801/j.cnki.fhclxb.20210916.007

石墨烯纳米片对Ni-W-ZrO2复合镀层性能的影响

doi: 10.13801/j.cnki.fhclxb.20210916.007
基金项目: 中原领军人才项目
详细信息
    通讯作者:

    张兰,博士,教授,博士生导师,研究方向为先进材料的制备与力学性能  E-mail:ielzhang@zzu.edu.cn

  • 中图分类号: TB332

Effect of graphene nanosheets on the properties of Ni-W-ZrO2 composite coating

  • 摘要: 为提高Ni-W-ZrO2复合镀层的显微硬度和耐蚀性,通过电沉积方法在7075铝合金上制备Ni-W-ZrO2-石墨烯纳米片(GNPs)复合镀层,利用GNPs来改善Ni-W-ZrO2复合镀层表面性能不足的问题。利用正交试验对实验工艺条件进行优选:电流密度为10 A/dm2,搅拌速度为250 r/min,温度为60℃。在优选工艺条件下,ZrO2纳米颗粒保持10 g/L,改变GNPs的含量(1、2、3、4 g/L),寻求最佳GNPs添加量的Ni-W-10 g/L ZrO2-GNPs复合镀层。通过显微硬度计及旋转摩擦试验仪,研究显微硬度和耐磨性,通过SEM、EDS、XRD和AFM进行微观表征。通过电化学方法研究Ni-W-ZrO2-GNPs复合镀层在质量分数为3.5wt%NaCl溶液中的耐蚀性。结果表明:GNPs和ZrO2纳米颗粒均匀共沉积在镍钨镀层中,GNPs的掺入对Ni-W-ZrO2复合镀层微观形貌、晶粒大小、显微硬度、摩擦性能及耐蚀性均有显著影响,当GNPs添加量为3 g/L时,镍(钨)基体的晶粒尺寸最小,显微硬度(HV 942)最高,平均摩擦系数(0.1981)最小;当GNPs添加量为2 g/L时,Ni-W-ZrO2-GNPs复合镀层的耐蚀性(电荷转移电阻Rct:9532 Ω·cm2)相较Ni-W-ZrO2复合镀层的耐蚀性(Rct:1766 Ω·cm2)改善明显。

     

  • 图  1  ZrO2纳米颗粒的TEM图像 (a) 和XRD图谱 (b)

    Figure  1.  TEM image and XRD pattern of ZrO2 nanoparticles

    图  2  石墨烯纳米片(GNPs)的拉曼图谱

    Figure  2.  Raman spectra of graphene nanosheets (GNPs)

    D—D band; G—G band

    图  3  不同GNPs添加量下Ni-W-ZrO2-GNPs复合镀层的SEM图像

    Figure  3.  SEM images of Ni-W-ZrO2-GNPs composite coating with different GNPs addition amount

    图  4  不同GNPs添加量下Ni-W-ZrO2-GNPs复合镀层的AFM图像

    Figure  4.  AFM images of Ni-W-ZrO2-GNPs composite coating with different GNPs addition amount

    图  5  GNPs添加量对Ni-W-ZrO2-GNPs复合镀层中W、Zr、C含量的影响

    Figure  5.  Effect of GNPs addition on the contents of W, Zr and C in Ni-W-ZrO2-GNPs composite coating

    图  6  Ni-W-10 g/L ZrO2-2 g/L GNPs复合镀层中Ni (a)、W (b)、C (c) 和Zr (d) 元素的EDS图谱

    Figure  6.  EDS spectras of Ni (a), W (b), C (c) and Zr (d) elements in Ni-W-10 g/L ZrO2-2 g/L GNPs composite coatings

    图  7  不同GNPs添加量下Ni-W-ZrO2-GNPs复合镀层的截面微观形貌

    Figure  7.  Cross-sectional micro-morphologies of Ni-W-ZrO2-GNPs composite coatings with different GNPs additions

    图  8  不同GNPs添加量下Ni-W-ZrO2-GNPs复合镀层的XRD图谱

    Figure  8.  XRD pattern of Ni-W-ZrO2-GNPs composite coatings with different GNPs additions

    图  9  不同GNPs添加量对Ni-W-ZrO2-GNPs复合镀层晶粒尺寸的影响

    Figure  9.  Effect of different GNPs additions on grain size of Ni-W-ZrO2-GNPs composite coatings

    图  10  不同GNPs添加量对Ni-W-ZrO2-GNPs复合镀层显微硬度及平均摩擦系数的影响

    Figure  10.  Effect of different GNPs addition on the microhardness and average friction coefficient of Ni-W-ZrO2-GNPs composite coating

    图  11  干摩擦条件下Ni-W-ZrO2-GNPs复合镀层摩擦系数随时间的摩擦曲线

    Figure  11.  Friction curves of Ni-W-ZrO2-GNPs composite coatings with time under dry friction condition

    图  12  不同GNPs添加量的Ni-W-ZrO2-GNPs复合镀层的阻抗谱 (a)和动电位极化曲线 (b)

    Figure  12.  Impedance spectrum (a) and potentio dynamic polarization curve (b) of Ni-W-ZrO2-GNPs composite coating with different GNPs addition amount

    图  13  Ni-W-ZrO2-GNPs复合镀层等效电路模型

    Figure  13.  Equivalent electrical circuit model of Ni-W-ZrO2-GNPs composite coating

    Rs—Solution resistance; CPE—Constant phase element; Rct—Electrochemical reaction charge transfer resistance

    表  1  Ni-W-ZrO2-GNPs复合镀层正交试验结果

    Table  1.   Orthogonal experimental results of Ni-W-ZrO2-GNPs composite plating

    NumberContent of GNPs/
    (g·L−1)
    Current density/
    (A·dm−2)
    Temperature/
    Stirring speed/
    (r·min−1)
    MicrohardnessAverage friction
    coefficient
    1 0 6 40 150 659 0.5721
    2 0 8 50 200 684 0.5437
    3 0 10 60 250 710 0.4697
    4 0 12 70 300 723 0.5042
    5 1 6 50 250 734 0.3181
    6 1 8 40 300 702 0.3469
    7 1 10 70 150 746 0.2731
    8 1 12 60 200 893 0.2661
    9 2 6 60 300 801 0.2504
    10 2 8 70 250 757 0.2573
    11 2 10 40 200 785 0.2326
    12 2 12 50 150 745 0.3006
    13 3 6 70 200 768 0.2724
    14 3 8 60 150 831 0.2520
    15 3 10 50 300 821 0.2227
    16 3 12 40 250 819 0.2533
    下载: 导出CSV

    表  2  Ni-W-ZrO2-GNPs复合镀层直接分析结果

    Table  2.   Direct analysis results of Ni-W-ZrO2-GNPs composite plating

    NumberContent of
    GNPs/(g·L−1)
    Current density/
    (A·dm−2)
    Temperature/
    Stirring speed/
    (r·min−1)
    MicrohardnessAverage friction
    coefficient
    1312602008760.2454
    2310602509420.1981
    3310503008210.2227
    下载: 导出CSV

    表  3  Ni-W-ZrO2-GNPs复合镀层电化学阻抗数据

    Table  3.   Electrochemical impedance data of Ni-W-ZrO2-GNPs composite coating

    SampleRs/(Ω·cm2)Rct/(Ω·cm2)CPE-T/(Ω−1·cm−2·sn)CPE-P/(Ω−1·cm−2·sn)
    Ni-W-10 g/L ZrO2 8.254 1766 0.000104 0.81017
    Ni-W-10 g/L ZrO2-1 g/L GNPs 7.411 3051 0.000136 0.82018
    Ni-W-10 g/L ZrO2-2 g/L GNPs 8.877 9532 0.000042 0.92166
    Ni-W-10 g/L ZrO2-3 g/L GNPs 7.672 7448 0.000068 0.85591
    Ni-W-10 g/L ZrO2-4 g/L GNPs 9.783 2606 0.000111 0.83356
    Note: CPE-T, CPE-P—Two parameters of CPE.
    下载: 导出CSV
  • [1] 任秀秀, 赵省向, 韩仲熙, 等. 纳米复合含能材料的制备方法、复合体系及其性能的研究进展[J]. 材料导报, 2019, 33(23):91-100.

    REN Xiuxiu, ZHAO Shengxiang, HAN Zhongxi, et al. Research progress on preparation methods, composite system and its property of nanocomposite energetic materials[J]. Materials Review,2019,33(23):91-100(in Chinese).
    [2] 武高辉. 金属基复合材料发展的挑战与机遇[J]. 复合材料学报, 2014, 31(5):1228-1237.

    WU Gaohui. Development challenge and opportunity of metal matrix composites[J]. Acta Materiae Compositae Sinica,2014,31(5):1228-1237(in Chinese).
    [3] 王慧远, 李超, 李志刚, 等. 纳米增强体强化轻合金复合材料制备及构型设计研究进展与展望[J]. 金属学报, 2019, 55(6):683-691.

    WANG Huiyuan, LI Chao, LI Zhigang, et al. Current research and future prospect on the preparation and architecture design of nanomaterials reinforced light metal matrix composites[J]. Acta Metallurgica Sinica,2019,55(6):683-691(in Chinese).
    [4] TORABINEJAD V, ALIOFKHAZRAEI M, ROUHAGHDAM A S, et al. Mechanical properties of multilayer Ni-Fe and Ni-Fe-Al2O3 nanocomposite coating[J]. Materials Science & Engineering A,2017,700:448-456.
    [5] ZHOU Y R, ZHANG S, NIE L L, et al. Electrodeposition and corrosion resistance of Ni-P-TiN composite coating on AZ91D magnesium alloy[J]. Transactions of Nonferrous Metals Society of China,2016,26(11):2976-2987. doi: 10.1016/S1003-6326(16)64428-X
    [6] ALLAHYARZADEH M H, ALIOFKHAZRAEI M, REZVANIAN A R, et al. Ni-W electrodeposited coatings: Characterization, properties and applications[J]. Surface and Coatings Technology,2016, 307:978-1010.
    [7] COSTA J M, NETO A. Electrodeposition of nickel-tungsten alloys under ultrasonic waves: Impact of ultrasound inten-sity on the anticorrosive properties[J]. Ultrasonics Sonochemistry,2021,73:105495. doi: 10.1016/j.ultsonch.2021.105495
    [8] LEE H B. Synergy between corrosion and wear of electrodeposited Ni-W coating[J]. Tribology Letters,2013,50(3):407-419.
    [9] BELTOWSKA-LEHMAN E, BIGOS A, SZCZERBA M J, et al. Heat treatment of ultrasonic electrodeposited Ni-W/ZrO2 nanocomposites[J]. Surface and Coatings Technology,2020,393:125779. doi: 10.1016/j.surfcoat.2020.125779
    [10] LIU X J, WAN C, DONG Y R, et al. Preparation and property of gradient Ni-W-ZrO2 composite coating on LY12 alloy[J]. Transactions of the Indian Institute of Metals,2019,72(5):1187-1199. doi: 10.1007/s12666-019-01606-2
    [11] 舒霞, 李云, 吴玉程, 等. Ni-W-ZrO2复合镀层的制备及耐腐蚀性能[J]. 复合材料学报, 2007, 24(6):116-120.

    SHU Xia, LI Yun, WU Yucheng, et al. Preparation and corrosion resistance of Ni-W-ZrO2 composite coatings by electrodeposition[J]. Acta Materiae Compositae Sinica,2007,24(6):116-120(in Chinese).
    [12] LI B S, LI D D, ZHANG J, et al. Preparation of Ni-W nanocrystalline composite films reinforced by embedded zirconia ceramic nanoparticles[J]. Materials Research Bulletin,2019,114:138-147. doi: 10.1016/j.materresbull.2019.03.004
    [13] ZHANG W W, JI C C, LI B S. Synthesis and properties of Ni-W/ZrO2 nanocomposite coating fabricated by pulse electrodeposition[J]. Results in Physics,2019,13:102242.
    [14] 苏峰华, 张欣博, 孙建芳. 功能化石墨烯及石墨烯基纳米复合材料润滑添加剂的研究进展[J]. 表面技术, 2021, 50(4):1-17.

    SU Fenghua, ZHANG Xinbo, SUN Jianfang. Research progress of functionalized graphene and graphene-based nanocomposites lubricating additives[J]. Surface Technology,2021,50(4):1-17(in Chinese).
    [15] 王剑桥, 雷卫宁, 薛子明, 等. 石墨烯增强金属基复合材料的制备及应用研究进展[J]. 材料工程, 2018, 46(12):18-27.

    WANG Jianqiao, LEI Weining, XUE Ziming, et al. Research progress on synthesis and application of graphene reinforced metal matrix composites[J]. Journal of Materials Engineering,2018,46(12):18-27(in Chinese).
    [16] 王娟, 张法明, 商彩云, 等. 石墨烯/钛基复合材料的界面反应控制、微观组织和压缩性能[J]. 复合材料学报, 2020, 37(12):3137-3148.

    WANG Juan, ZHANG Faming, SHANG Caiyun, et al. Tailoring of interface reaction, microstructure and compressive properties of graphene reinforced titanium alloy matrix composites[J]. Acta Materiae Compositae Sinica,2020,37(12):3137-3148(in Chinese).
    [17] YI F, YI H, LUO P Y, et al. Pulse current electrodeposition and properties of Ni-W-GO composite coatings[J]. Jour-nal of the Electrochemical Society,2016,163(3):68-73.
    [18] UYSAL M, ALGÜL H, DURU E, et al. Tribological properties of Ni-W-TiO2-GO composites produced by ultrasonically-assisted pulse electro co-deposition[J]. Surface and Coatings Technology,2021,410:126942. doi: 10.1016/j.surfcoat.2021.126942
    [19] 田水昌, 崔洪芝, 张国松, 等. Ni-W-GO-Al2O3复合镀层的制备及其耐磨耐蚀性能[J]. 材料热处理学报, 2019, 40(2):140-147.

    TIAN Shuichang, CUI Hongzhi, ZHANG Guosong, et al. Preparation of Ni-W-GO-Al2O3 composite coatings and its wear and corrosion resistance[J]. Transactions of Mater-ials and Heat Treatment,2019,40(2):140-147(in Chinese).
    [20] 冯彦寒, 方建华, 吴江, 等. 等离子喷涂制备石墨烯/Al2O3+13%TiO2自润滑涂层及其性能研究[J]. 表面技术, 2019, 48(12):201-207.

    FENG Yanhan, FANG Jianhua, WU Jiang, et al. Preparation and property research of graphene/Al2O3+13%TiO2 self-lubricating coatings fabricated by plasma spray[J]. Surface Technology,2019,48(12):201-207(in Chinese).
    [21] 丁建涛, 孟凡涛, 隋江, 等. 石墨烯分散方法研究进展[J]. 应用化工, 2018, 315(5):202-206.

    DING Jiantao, MENG Fantao, SUI Jiang, et al. A review of graphene dispersion method[J]. Applied Chemical Industry,2018,315(5):202-206(in Chinese).
    [22] ZHAO C M, YAO Y W, HE L. Electrodeposition and characterization of Ni-W/ZrO2 nanocomposite coatings[J]. Bulletin of Materials Science,2014,37(5):1053-1058. doi: 10.1007/s12034-014-0044-z
    [23] BELTOWSKA-LEHMAN E, INDYKA P, BIGOS A, et al. Ni-W/ZrO2 nanocomposites obtained by ultrasonic DC electrodeposition[J]. Materials & Design,2015,80:1-11.
    [24] ELIAS L, HEGDE A C. Electrodeposition of laminar coatings of Ni-W alloy and their corrosion behaviour[J]. Surface & Coatings Technology,2015,283:61-69.
    [25] LI H, HE Y, HE T, et al. The influence of pulse plating parameters on microstructure and properties of Ni-W-Si3N4 nanocomposite coatings[J]. Ceramics International,2016,42(16):18380-18392. doi: 10.1016/j.ceramint.2016.08.171
    [26] CORDERO Z C, KNIGHT B E, SCHUH C A. Six decades of the Hall-Petch effect-A survey of grain-size strengthening studies on pure metals[J]. International Materials Reviews,2016,61(8):495-512.
    [27] LI B S, LI D D, ZHANG J, et al. Electrodeposition of Ni-W/TiN-Y2O3 nanocrystalline coating and investigation of its surface properties and corrosion resistance[J]. Journal of Alloys and Compounds,2019,787:952-962. doi: 10.1016/j.jallcom.2019.02.168
    [28] ZHANG R Y, LI Z L, YU X, et al. Characterisation and pro-perties of Ni-W-Y2O3-ZrO2 nanocomposite coating[J]. Surface Engineering,2019,35(7):578-587. doi: 10.1080/02670844.2018.1547246
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  812
  • HTML全文浏览量:  457
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-09-01
  • 录用日期:  2021-09-08
  • 网络出版日期:  2021-09-18
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回