留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可快速精确定位CFRP板冲击损伤的等时周向轨迹法

刘海龙 王晓煜 张树森 MUHAMMADQaisar 林盛

刘海龙, 王晓煜, 张树森, 等. 可快速精确定位CFRP板冲击损伤的等时周向轨迹法[J]. 复合材料学报, 2022, 39(8): 4152-4164. doi: 10.13801/j.cnki.fhclxb.20210915.002
引用本文: 刘海龙, 王晓煜, 张树森, 等. 可快速精确定位CFRP板冲击损伤的等时周向轨迹法[J]. 复合材料学报, 2022, 39(8): 4152-4164. doi: 10.13801/j.cnki.fhclxb.20210915.002
LIU Hailong, WANG Xiaoyu, ZHANG Shusen, et al. Isochronous circumferential trajectory method for the rapid and accurate location of impact damage of CFRP plate[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4152-4163. doi: 10.13801/j.cnki.fhclxb.20210915.002
Citation: LIU Hailong, WANG Xiaoyu, ZHANG Shusen, et al. Isochronous circumferential trajectory method for the rapid and accurate location of impact damage of CFRP plate[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4152-4163. doi: 10.13801/j.cnki.fhclxb.20210915.002

可快速精确定位CFRP板冲击损伤的等时周向轨迹法

doi: 10.13801/j.cnki.fhclxb.20210915.002
基金项目: 国家自然科学基金(51775078);高端装备关键结构健康管理国际联合研究中心开放课题基金(KFJJ20-20K);装备预研领域基金(61405180302)
详细信息
    通讯作者:

    王晓煜,博士,副教授,硕士生导师,研究方向为结构健康监测  E-mail:99925010@qq.com

  • 中图分类号: TQ327.3;TB332

Isochronous circumferential trajectory method for the rapid and accurate location of impact damage of CFRP plate

  • 摘要: 考虑碳纤维增强树脂基复合材料(Carbon fiber reinforced plastic,CFRP)板的纤维铺层对称性和导波传播各项异性,提出一种快速、定位精确的CFRP冲击损伤的等时周向轨迹定位方法。以损伤指数与仿真计算的方式,确定CFRP板周向导波传播速度与损伤反射波的飞行时间后,依据换能器、传感器与损伤位置之间的三角函数关系,计算既满足CFRP板中导波各个方向的传播速度又满足飞行时间的似然点。线性拟合似然点形成等时周向轨迹曲线样条,根据CFRP板的铺层对称性,镜像了轨迹曲线样条形成闭合的等时周向轨迹曲线,以三曲线交点实现损伤定位。以四点矩形阵列斜对角激励的方式进行CFRP板的冲击损伤检测实验。其实验结果表明,损伤引起损伤指数值的增幅显著,损伤反射波飞行时间可准确获得。拟合轨迹所需似然点数仅为155个,具有较小的计算量。等时周向轨迹定位法的定位误差可控,在期望误差下定位精度良好,未超出损伤区域。

     

  • 图  1  等时周向轨迹定位法的定位流程

    Figure  1.  Localization process of isochronous circumferential trajectory localization method

    CFRP—Carbon fiber reinforced plastic

    图  2  碳纤维增强树脂基复合材料(CFRP)板的仿真模型

    Figure  2.  Carbon fiber reinforced plastic (CFRP) plate simulation model

    图  3  CFRP板的群速度频散曲线

    Figure  3.  Group velocity dispersion curves of CFRP plate

    A0, S0 and A1—Mode of Lamb wave

    图  4  350 kHz下S0模态Lamb波群速度剖面

    Figure  4.  Lamb wave group velocity profile in S0 mode at 350 kHz

    图  5  换能器、传感器与损伤之间的关系

    Figure  5.  Coordinate relationship between transducer, sensor and damage

    d1, d2 and d3—Propagation distance of Lamb wave; β1 and β2—Path angle

    图  6  CFRP板损伤似然点的平面分布

    Figure  6.  Planar distribution of damage likelihood points for CFRP plate

    图  7  似然点计算的流程框图

    Figure  7.  Flow diagram of likelihood point calculation

    T—Flight time of Lamb wave; f1, f2 and f3—Equations of propagation velocity, time and path; v1 and v2—Propagation velocity of guided wave on paths d1 and d2; v—Velocity in the data dictionary; ∆v—Error from the actual velocity; ∆t—Calculation step of time; ∆β—Calculation step of the angle

    图  8  CFRP板损伤似然点的计算与曲线拟合

    Figure  8.  Calculation of damage likelihood points and curve fitting for CFRP plate

    图  9  CFRP板冲击损伤的轨迹定位

    Figure  9.  Trajectory location of impact damage of CFRP plate

    图  10  CFRP板冲击损伤的范围计算

    Figure  10.  Calculation of impact damage range of CFRP plate

    图  11  CFRP板似然点的计算过程

    Figure  11.  Calculation process of likelihood point for CFRP plate

    Δl—Scan interval

    图  12  CFRP板周向损伤似然点的轨迹拟合

    Figure  12.  Trajectory fitting of circumferential damage likelihood points for CFRP plate

    图  13  实验设备(a)与实验方案(b)

    Figure  13.  Experimental equipment (a) and experimental scheme (b)

    图  14  未损伤与损伤CFRP板的采集信号

    Figure  14.  Acquisition signals for damaged and undamaged CFRP plate

    图  15  CFRP板采集信号的短时傅里叶变换(STFT)与损伤指数ID*计算

    Figure  15.  Short-time Fourier transform (STFT) and damage index ID* calculation of acquired signal for CFRP plate

    图  16  CFRP板S0模态的理论速度与实验测得速度

    Figure  16.  Theoretical velocity of S0 mode compared with the experimental velocity for CFRP plate

    图  17  CFRP板损伤似然点的拟合曲线

    Figure  17.  Fitting curves of the damage likelihood point for CFRP plate

    图  18  CFRP板1-2路径不同Δβ取值的拟合轨迹

    Figure  18.  Fitting locus of 1-2 path with different values of Δβ for CFRP plate

    图  19  CFRP板损伤的曲线定位

    Figure  19.  Curve localization of damage for CFRP plate

    表  1  33vol%碳纤维(CF)/环氧树脂(EP)板的力学参数

    Table  1.   Performance parameters of 33vol% carbon fiber (CF)/epoxy (EP) plate

    E1/GPaE2/GPaE3/GPaυ1υ2
    135 8.8 8.8 0.3 0.3
    υ3 G12/GPa G13/GPa G23/GPa ρ/(kg·m−3)
    0.03 4.7 4.7 3 1570
    Notes: E—Young's modulu; υ—Poisson’s ratio; G—Shear modulus; ρ—Density.
    下载: 导出CSV

    表  2  CFRP板速度字典角度步长的计算参数

    Table  2.   Calculation parameters of CFRP plate velocity dictionary angle step

    θ′/
    (°)
    vmax-vmin/
    (m·s−1)
    T/
    μs
    Δlv/mmΔθ/
    (°)
    45 1658 121.64 1 0.23
    Notes: θ′—Angular interval between the maximum and minimum velocity values of the data dictionary group; vmax—Maximum value of Lamb group velocity in the data dictionary; vmin—Minimum value; T—Time of flight of reflected wave; Δlv—Error; Δθ—Angle step of the data dictionary.
    下载: 导出CSV

    表  3  CFRP板损伤定位点的计算值与误差

    Table  3.   Calculated value and error of damage anchor point for CFRP plate

    Intersection point1-2 & 2-41-2 & 1-32-4 & 1-3Mean valueDamageError
    (x/m, y/m) (0.1451, 0.1401) (0.1501, 0.1400) (0.1468, 0.1234) (0.1473, 0.1346) (0.1414, 0.1414) (0.0059, 0.0068)
    下载: 导出CSV
  • [1] FASIHAH Z N, HANAFI I, MUHSIN S A. Metal filled thermoplastic composites[J]. Polymer-Plastics Technology and Materials,2021,60(10):1033-1050. doi: 10.1080/25740881.2021.1882489
    [2] 程晖, 樊新田, 徐冠华, 等. 航空复合材料结构精密干涉连接技术综述[J]. 航空学报, 2021, 42(10): 48-66.

    CHENG Hui, FAN Xintian, XU Guanhua, et al. A review of precision interference bonding techniques for aviation composite structures[J]. Journal of Aviation, 2021, 42(10): 48-66(in Chinese).
    [3] HEGDE S, SHENOY B S, CHETHAN K N. Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance[J]. Materials Today: Proceedings,2019,19(2):658-662.
    [4] SELLITTO A, RICCIO A, RUSSO A, et al. Ultrasonic damage detection of impacted long and short fibre composite specimens[J]. Key Engineering Materials,2019,827(1):31-36.
    [5] WANG X, DING Y, YANG L. A semidefinite relaxation method for elliptical location[J]. Electronics,2020,9(1):128-146. doi: 10.3390/electronics9010128
    [6] SHEVTSOVA M, KIRILLOVA E, ROZHKOV E, et al. Piezoelectric based lamb waves generation and propagation in orthotropic CFRP plates: I — Influence of material damping[J]. Materials Science Forum,2019,962(1):218-226.
    [7] WEILAND J, HESSER D F, XIONG W, et al. Structural health monitoring of an adhesively bonded CFRP aircraft fuselage by ultrasonic lamb waves[J]. Proceedings of the Institution of Mechanical Engineers,2020,234(13):2000-2010. doi: 10.1177/0954410020950511
    [8] MUSRAGH S, YE L, DONG X J, et al. Evaluation of barely visible indentation damage (BVID) in CF/EP sandwich composites using guided wave signals[J]. Mechanical Systems and Signal Processing,2016,76(77):497-517.
    [9] 王晓煜, 刘海龙, 高斯佳, 等. 基于超磁致伸缩换能器的CFRP板孔裂纹缺陷检测[J]. 振动与冲击, 2020, 39(23):202-210.

    WANG Xiaoyu, LIU Hailong, GAO Sijia, et al. Hole crack damage detection of CFRP plate based on super-magneto-strictive transducer[J]. Vibration and Shock,2020,39(23):202-210(in Chinese).
    [10] FENDZI C, MECHBAL N, REBILLAT M, et al. A general Bayesian framework for ellipse-based and hyperbola-based damage localization in anisotropic composite plates[J]. Journal of Intelligent Material Systems and Structures,2016,27(3):350-374. doi: 10.1177/1045389X15571383
    [11] 徐浩, 沙刚刚, 李腾腾, 等. 基于二维连续小波变换与数据融合技术的逆有限元法-伪激励法结构损伤识别方法[J]. 复合材料学报, 2021, 38(11): 3564-3572.

    XU Hao, SHA Ganggang, LI Tengteng, et al. Inverse finite element method and pseudo-excitation method for structural damage identification based on two-dimensional continuous wavelet transform and data fusion technology[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3564-3572(in Chinese).
    [12] JIE C, WANG D. Biosignal analysis with matching-pursuit based adaptive chirplet transform[J]. arXiv Preprint arXiv, 2017, 1709: 08328.
    [13] 余晓东, 雷英杰, 宋亚飞, 等. 基于直觉模糊核匹配追踪集成的目标识别方法[J]. 通信学报, 2015, 36(10):165-171. doi: 10.11959/j.issn.1000-436x.2015260

    XU Xiaodong, LEI Yingjie, SONG Yafei, et al. Target recognition method based on intuitionistic fuzzy kernel matching pursuit integration[J]. Journal of Communication,2015,36(10):165-171(in Chinese). doi: 10.11959/j.issn.1000-436x.2015260
    [14] 许颖, 陈锐, 卢苗苗, 等. 考虑材料各向异性的纤维增强聚合物基复合材料板损伤Lamb波检测和定位[J]. 复合材料学报, 2019, 36(2):389-399.

    XU Ying, CHEN Rui, LU Miaomiao, et al. Lamb wave detection and localization of fiber reinforced polymer matrix composite plates considering material anisotropy[J]. Acta Materiae Compositae Sinica,2019,36(2):389-399(in Chinese).
    [15] WANG X B, HE L, MA Y C, et al. Development of broadband high-frequency piezoelectric micromachined ultrasonic transducer array[J]. Sensors,2021,21(5):1823. doi: 10.3390/s21051823
    [16] HUNGJOO K, CHANGBIN J, JONG C W. Pulse peak delay-total focusing method for ultrasonic tomography on concrete structure[J]. Applied Sciences,2021,11(4):1741. doi: 10.3390/app11041741
    [17] HE T, TAI J, SHAN Y, et al. A fast acoustic emission beamforming localization method based on Hilbert curve[J]. Mechanical Systems and Signal Processing,2019,133:106291. doi: 10.1016/j.ymssp.2019.106291
    [18] FAN W, LIANG J L, FAN X H, et al. A unified sparse array design framework for beampattern synthesis[J]. Signal Processing,2021,182:107930. doi: 10.1016/j.sigpro.2020.107930
    [19] CLAUDIA S, ANDREA T. Wideband 2D sparse array optimization combined with multiline reception for real-time 3D medical ultrasound[J]. Ultrasonics,2020,111:106318.
    [20] NANDYALA A R, DARPE A K, SINGH S P. Effective stiffness matrix method for predicting the dispersion curves in general anisotropic composites[J]. Archive of Applied Mechanics,2019,89(9):1923-1938. doi: 10.1007/s00419-019-01552-x
    [21] BARSKI M, PAJAK P. Determination of dispersion curves for composite materials with the use of stiffness matrix method[J]. Acta Mechanica et Automatica,2017,11(2):121-128. doi: 10.1515/ama-2017-0019
    [22] HAKODA C, ROSE J, SHOKOUHI P, et al. Using Floquet periodicity to easily calculate dispersion curves and wave structures of homogeneous waveguides[C]//44th Annual Review of Progress in Quantitative Nondestructive Evaluation. Provo: American Institute of Physics Conference Series, 2018: 20016-20026.
    [23] BARBERO E J. Introduction to composite materials design, third edition[M]. 3th ed. New York: CRC Press, 2017: 161-167.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  736
  • HTML全文浏览量:  358
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-22
  • 修回日期:  2021-08-18
  • 录用日期:  2021-08-29
  • 网络出版日期:  2021-09-15
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回