留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维机织双层间隔复合材料的压缩性能

陈龙 张昆 郑连刚 许福军

陈龙, 张昆, 郑连刚, 等. 三维机织双层间隔复合材料的压缩性能[J]. 复合材料学报, 2022, 39(8): 3703-3711. doi: 10.13801/j.cnki.fhclxb.20210913.004
引用本文: 陈龙, 张昆, 郑连刚, 等. 三维机织双层间隔复合材料的压缩性能[J]. 复合材料学报, 2022, 39(8): 3703-3711. doi: 10.13801/j.cnki.fhclxb.20210913.004
CHEN Long, ZHANG Kun, ZHENG Lian'gang, et al. Compression properties of three-dimensional woven double spacer composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3703-3711. doi: 10.13801/j.cnki.fhclxb.20210913.004
Citation: CHEN Long, ZHANG Kun, ZHENG Lian'gang, et al. Compression properties of three-dimensional woven double spacer composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3703-3711. doi: 10.13801/j.cnki.fhclxb.20210913.004

三维机织双层间隔复合材料的压缩性能

doi: 10.13801/j.cnki.fhclxb.20210913.004
基金项目: 上海市自然科学基金(20ZR1402200);中央高校基本科研业务费专项资金(2232021G-01)
详细信息
    通讯作者:

    许福军,博士,教授,博士生导师,研究方向为纺织结构复合材料  E-mail: fjxu@dhu.edu.cn

  • 中图分类号: TB332

Compression properties of three-dimensional woven double spacer composites

  • 摘要: 为了增强三维机织间隔复合材料的压缩强度及提高其压缩能量吸收能力,受多层夹芯结构的设计理念启发,本论文设计并制备了柱纱高度为(6+6) mm及(4+8) mm的三维机织双层间隔复合材料。通过与柱纱高度为12 mm的单层间隔复合材料进行对比,研究了复合材料的平压、侧压性能及其破坏模式。结果表明,两种双层间隔复合材料的平压强度、侧压强度及能量吸收值相较于单层间隔复合材料都显著提高,其中柱纱高度为(6+6) mm的双层间隔复合材料的平压强度 (11.5 MPa) 提高了57.5%,平压比吸能值 (6983.7 J/kg) 提高了152.4%;此外,双层间隔复合材料的平压破坏模式为柱纱的逐层断裂,侧压破坏模式为面板裂纹扩展,表现出更大的吸能特性。双层间隔结构设计不仅显著增强了间隔复合材料的平压和侧压性能,而且改善了其破坏模式,提高了其在实际应用中的安全性,并为较高柱纱高度以及多层间隔复合材料的结构设计提供了新的思路。

     

  • 图  1  三维机织单/双层间隔织物的结构示意图

    Figure  1.  Structural diagrams of 3D woven single/double spacer fabrics

    3DWSF—Three-dimensional woven spacer fabrics

    图  2  三维机织双层间隔织物的织造

    Figure  2.  Weaving of 3D woven double spacer composites

    图  3  三维机织单/双层间隔复合材料

    Figure  3.  3D woven single/double spacer composites

    图  4  三维机织单/双层间隔复合材料的平压应力-应变曲线

    Figure  4.  Flatwise compression stress-strain curves of 3D woven single/double spacer composites

    图  5  三维机织单/双层间隔复合材料的平压峰值应力

    Figure  5.  Flatwise compression peak stress of 3D woven single/double spacer composites

    图  6  三维机织单/双层间隔复合材料的平压比吸能值

    Figure  6.  Specific energy absorption values of flatwise compression of 3D woven single/double spacer composites

    图  7  三维机织单/双层间隔复合材料的平压破坏过程

    Figure  7.  Flatwise compression failure process of 3D woven single/double spacer composites

    图  8  三维机织单/双层间隔复合材料的侧压应力-应变曲线

    Figure  8.  Edgewise compression stress-strain curves of 3D woven single/double spacer composites

    图  9  三维机织单/双层间隔复合材料的侧压峰值应力

    Figure  9.  Edgewise compression peak stress of 3D woven single/double spacer composites

    图  10  三维机织单/双层间隔复合材料的侧压比吸能值

    Figure  10.  Specific energy absorption values of edgewise compression of 3D woven single/double spacer composites

    图  11  三维机织单/双层间隔复合材料经纬向侧压破坏图

    Figure  11.  Edgewise compression failure pictures of 3D woven single/double spacer composites

    表  1  三维机织单/双层间隔织物的具体织造参数

    Table  1.   Specific weaving parameters of 3D woven single/double spacer fabrics

    SpecimenYarn linear density/(10−6 kg·m−1)Fabric density/(ends·cm−1)Pile height/mm
    WarpWeftPileWarpWeftPile
    3DWSF-12 300 600 300 5.1 5.5 5.1 12
    3DWSF-6+6 5.1 5.3 5.1 6+6
    3DWSF-4+8 5.1 5.3 5.1 4+8
    下载: 导出CSV

    表  2  三维机织单/双层间隔复合材料试样的参数信息

    Table  2.   Details of parameters of 3D woven single/double spacer composites

    SpecimenCompression directionL/mmW/mmH/mmDensity/(g·cm−3)Fiber mass fraction/wt%
    3DWSC-12Flat29.8929.9812.130.3847.27
    Warp99.5552.07
    Weft100.6252.04
    3DWSC-6+6Flat30.1930.4311.780.5544.47
    Warp99.8551.96
    Weft100.1552.19
    3DWSC-4+8Flat29.8630.0212.230.5242.42
    Warp100.2051.47
    Weft100.3051.59
    Notes: L—Length of the specimen; W—Width of the specimen; H—Thickness of the specimen.
    下载: 导出CSV
  • [1] MIHAILOVIC T V, ASANOVIC K A, CEROVIC D D. Structural design of face fabrics and the core as a premise for compression behavior of 3D woven sandwich fabric[J]. Journal of Sandwich Structures & Materials,2016,20(6):718-734.
    [2] VAN VUURE A W, IVENS J A, VERPOEST I. Mechanical properties of composite panels based on woven sandwich-fabric preforms[J]. Composites Part A: Applied Science and Manufacturing,2000,31(7):671-680. doi: 10.1016/S1359-835X(00)00017-8
    [3] WANG L Y, LIU X H, SALEEMI S, et al. Bending properties and failure mechanisms of three-dimensional hybrid woven spacer composites with glass and carbon fibers[J]. Textile Research Journal,2019,89(21-22):4502-4511. doi: 10.1177/0040517519837730
    [4] ZHANG M, WANG X, LIU S, et al. Effects of face sheet structure on mechanical properties of 3D integrated woven spacer composites[J]. Fibers and Polymers,2020,21(7):1594-1604. doi: 10.1007/s12221-020-9908-6
    [5] XU F J, ZHANG K, QIU Y P. Light-weight, high-gain three-dimensional textile structural composite antenna[J]. Composites Part B: Engineering, 2020, 185: 107781.
    [6] GEERINCK R, DE BAERE I, DE CLERCQ G, et al. One-shot production of large-scale 3D woven fabrics with integrated prismatic shaped cavities and their applications[J]. Mater-ials & Design, 2019, 165: 107578.
    [7] WANG L Y, ZHANG K, FARHA F I, et al. Compressive strength and thermal insulation properties of the 3D woven spacer composites with connected spacer yarn structure[J]. Journal of Materials Science,2020,55(6):2380-2388. doi: 10.1007/s10853-019-04197-x
    [8] 张艳红, 耿杰, 匡宁, 等. 三维中空复合材料在天线罩上的应用研究[J]. 玻璃纤维, 2015(3):20-23. doi: 10.3969/j.issn.1005-6262.2015.03.005

    ZHANG Yanhong, GENG Jie, KUANG Ning, et al. Application of 3D hollow sandwich composite in radome[J]. Fiber Glass,2015(3):20-23(in Chinese). doi: 10.3969/j.issn.1005-6262.2015.03.005
    [9] LI M, WANG S K, ZHANG Z G, et al. Effect of structure on the mechanical behaviors of three-dimensional spacer fabric composites[J]. Applied Composite Materials,2009,16(1):1-14. doi: 10.1007/s10443-008-9072-4
    [10] MIRDEHGHAN A, NOSRATY H, SHOKRIEH M M, et al. Micromechanical modelling of the compression strength of three-dimensional integrated woven sandwich composites[J]. Journal of Industrial Textiles,2018,48(9):1399-1419.
    [11] FAN H L, ZHAO L, CHEN H L, et al. Dynamic compression failure mechanisms and dynamic effects of integrated woven sandwich composites[J]. Journal of Composite Materials,2014,48(4):427-438. doi: 10.1177/0021998312473859
    [12] 高爱君, 李敏, 王绍凯, 等. 三维间隔连体织物复合材料力学性能[J]. 复合材料学报, 2008, 25(2):87-93. doi: 10.3321/j.issn:1000-3851.2008.02.016

    GAO Aijun, LI Min, WANG Shaokai, et al. Experimental study on the mechanical characteristics of 3D spacer fabric composites[J]. Acta Materiae Compositae Sinica,2008,25(2):87-93(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.02.016
    [13] 周光明, 薄晓莉, 匡宁. 整体中空夹层复合材料的弹性性能分析[J]. 复合材料学报, 2010, 27(1):185-189.

    ZHOU Guangming, BO Xiaoli, KUANG Ning. Analysis of elastic property for hollow integrated sandwich compo-sites[J]. Acta Materiae Compositae Sinica,2010,27(1):185-189(in Chinese).
    [14] UMAIR M, HAMDANI S T A, NAWAB Y, et al. Effect of pile height on the mechanical properties of 3D woven spacer composites[J]. Fibers and Polymers,2019,20(6):1258-1265. doi: 10.1007/s12221-019-8761-y
    [15] SADIGHI M, HOSSEINI S A. Finite element simulation and experimental study on mechanical behavior of 3D woven glass fiber composite sandwich panels[J]. Composites Part B: Engineering,2013,55:158-166. doi: 10.1016/j.compositesb.2013.06.030
    [16] ZHAO C Q, LI D S, GE T Q, et al. Experimental study on the compression properties and failure mechanism of 3D integrated woven spacer composites[J]. Materials & Design,2014,56:50-59.
    [17] FAN H L, ZHOU Q, YANG W, et al. An experiment study on the failure mechanisms of woven textile sandwich panels under quasi-static loading[J]. Composites Part B: En-gineering,2010,41(8):686-692. doi: 10.1016/j.compositesb.2010.07.004
    [18] REN C X, HU Z F, YAO C, et al. Experimental study on the quasi-static compression behavior of multilayer aluminum foam sandwich structure[J]. Journal of Alloys and Compounds, 2019, 810: 151860.
    [19] XIE S, WANG H, YANG C, et al. Mechanical properties of combined structures of stacked multilayer Nomex® honeycombs[J]. Thin-Walled Structures, 2020, 151: 106729.
    [20] WANG Z G, LIU J F, LU Z J, et al. Mechanical behavior of composited structure filled with tandem honeycombs[J]. Composites Part B: Engineering,2017,114:128-138. doi: 10.1016/j.compositesb.2017.01.018
    [21] XIONG J, VAZIRI A, MA L, et al. Compression and impact testing of two-layer composite pyramidal-core sandwich panels[J]. Composite Structures,2012,94(2):793-801. doi: 10.1016/j.compstruct.2011.09.018
    [22] WANG Z W, E Y P. Energy absorption properties of multi-layered corrugated paperboard in various ambient humidities[J]. Materials & Design,2011,32(6):3476-3485.
    [23] FAN H, YANG W, ZHOU Q. Experimental research of compressive responses of multi-layered woven textile sandwich panels under quasi-static loading[J]. Composites Part B: Engineering,2011,42(5):1151-1156. doi: 10.1016/j.compositesb.2011.03.008
    [24] 中国国家标准化管理委员会. 夹层结构或芯子平压性能试验方法: GB/T 1453—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for flatwise compression of sandwich constructions or cores: GB/T 1453—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [25] 中国国家标准化管理委员会. 夹层结构侧压性能试验方法: GB/T 1454—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for edgewise compressive properties of sandwich constructions: GB/T 1454—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [26] 中国国家标准化管理委员会. 玻璃纤维增强塑料树脂含量试验方法: GB/T 2577—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Reublic of China. Test method for resin content of glass fiber reinforced plastics: GB/T 2577—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  958
  • HTML全文浏览量:  662
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 修回日期:  2021-08-22
  • 录用日期:  2021-09-03
  • 网络出版日期:  2021-09-14
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回