留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海水海砂ECC梁的抗剪性能试验及有限元模拟

廖桥 苏元瑞 余江滔 王义超

廖桥, 苏元瑞, 余江滔, 等. 海水海砂ECC梁的抗剪性能试验及有限元模拟[J]. 复合材料学报, 2022, 39(8): 3929-3939. doi: 10.13801/j.cnki.fhclxb.20210911.002
引用本文: 廖桥, 苏元瑞, 余江滔, 等. 海水海砂ECC梁的抗剪性能试验及有限元模拟[J]. 复合材料学报, 2022, 39(8): 3929-3939. doi: 10.13801/j.cnki.fhclxb.20210911.002
LIAO Qiao, SU Yuanrui, YU Jiangtao, et al. Experimental study and finite element analysis of seawater sea-sand engineered cementitious composites beams[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3929-3939. doi: 10.13801/j.cnki.fhclxb.20210911.002
Citation: LIAO Qiao, SU Yuanrui, YU Jiangtao, et al. Experimental study and finite element analysis of seawater sea-sand engineered cementitious composites beams[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3929-3939. doi: 10.13801/j.cnki.fhclxb.20210911.002

海水海砂ECC梁的抗剪性能试验及有限元模拟

doi: 10.13801/j.cnki.fhclxb.20210911.002
基金项目: 国家自然科学基金(51478362)
详细信息
    通讯作者:

    余江滔,博士,教授,研究方向为高性能纤维混凝土应用  E-mail: yujiangtao@tongji.edu.cn

  • 中图分类号: TB332

Experimental study and finite element analysis of seawater sea-sand engineered cementitious composites beams

  • 摘要: 为研究海水海砂高延性纤维增强水泥基复合材料(SSE)梁的抗剪性能,进行了SSE材料的研制,并对玄武岩纤维增强树脂复合材料(Basalt fiber reinforced polymer,BFRP)筋增强海水海砂高延性纤维增强水泥基复合材料(ECC)梁(BFRP/SSE梁)进行剪切试验,分析了配箍率和剪跨比对梁抗剪性能的影响。试验结果表明:SSE的单轴受拉应变最大可达8.3%,平均裂缝宽度约为0.2 mm。BFRP/SSE梁剪切破坏时没有发生剥落破坏。在正常使用极限状态下,BFRP/SSE梁裂缝宽度小于0.3 mm,满足相关规范要求。在少箍筋和无箍筋的情况下,采用SSE制备的梁抗剪承载力反而提高59.32%~99.25%和6.37%~73.68%不等,且刚度也有一定程度的提升。在BFRP/SSE梁的结构设计中可以考虑不设置最小配箍率。采用有限元软件进行数值模拟,探讨了SSE的力学性能对无腹筋BFRP/SSE梁抗剪承载力的影响规律。计算结果表明,随SSE抗压强度提高抗剪承载力增加明显;随SSE抗拉强度提高抗剪承载力缓慢增加;SSE拉伸应变能力对梁抗剪承载力基本没有影响。本研究可为海水海砂ECC梁的工程应用提供参考依据。

     

  • 图  1  材料试验加载装置

    Figure  1.  Setup for material test

    LVDT—Linear variable differential transformer

    图  2  SSE单轴受拉应力-应变曲线及破坏形态

    Figure  2.  Tensile stress-strain curves and failure mode of SSE

    图  3  SSE单轴受拉特征参数

    Figure  3.  Tensile characteristic parameters of SSE

    图  4  SSE单轴受压应力-应变曲线及破坏形态

    Figure  4.  Compressive stress-strain curves and failure mode of SSE

    图  5  SSE抗压强度和弯曲强度

    Figure  5.  Compressive strength and flexural strength of SSE

    图  6  SSE受弯破坏形态

    Figure  6.  Failure modes of SSE under flexure

    图  7  SSE弯曲荷载-挠度曲线

    Figure  7.  Flexural load-deflection curves of SSE

    图  8  BFRP筋外观照片

    Figure  8.  Photos of BFRP bars

    图  9  BFRP/SSE梁和BFRP/SSM梁试件尺寸及配筋

    Figure  9.  Details of BFRP/SSE and BFRP/SSM beam specimens

    图  10  BFRP/SSE梁和BFRP/SSM梁剪跨段的典型破坏形态

    Figure  10.  Typical failure modes of BFRP/SSE and BFRP/SSM beams in shear span

    图  11  BFRP/SSE梁和BFRP/SSM梁荷载-跨中挠度曲线

    Figure  11.  Load versus mid-span deflection curves of BFRP/SSE and BFRP/SSM beams

    图  12  BFRP/SSE梁和BFRP/SSM梁荷载-裂缝宽度曲线

    Figure  12.  Load-crack width curves of BFRP/SSE and BFRP/SSM beams

    图  13  BFRP/SSE梁等效塑性应变云图

    Figure  13.  Distribution of equivalent plastic strain of BFRP/SSE beams

    图  14  各参数对BFRP/SSE梁抗剪承载力的影响

    Figure  14.  Influence of various parameters on shear capacity of BFRP/SSE beams

    表  1  海水海砂高延性纤维增强水泥基复合材料(SSE)配合比

    Table  1.   Mixing proportions of seawater sea-sand engineered cementitious composites (SSE)

    Mixture IDBinder materialSea-sand/wt%Seawater/wt%PS/wt%PE fiber/vol%
    Cement/wt%LP/wt%SF/wt%GGBFS/wt%
    SSE-0.18 1.00 0.14 0.21 1.07 1.04 0.44 0.015 1.5
    SSE-0.21 1.00 0.14 0.21 1.07 1.04 0.51 0.015 1.5
    SSE-0.27 1.00 0.14 0.21 1.07 1.04 0.65 0.015 1.5
    SSM-0.21 1.00 0.14 0.21 1.07 1.04 0.51 0.015
    Notes: SSE-x—SSE with water/binder ratio of x; SSM-0.21—Seawater sea-sand mortar with water/binder ratio of 0.21; LP—Limestone powder; SF—Silica fume; GGBFS—Ground granulated blast furnace slag; PS—Polycarboxylate superplasticizer; PE—Polyethylene.
    下载: 导出CSV

    表  2  玄武岩纤维增强树脂复合材料(BFRP)/SSE梁和BFRP筋增强水泥砂浆(BFRP/SSM)梁试件的主要参数

    Table  2.   Main parameters of basalt fiber reinforced polymer (BFRP)/SSE beam and BFRP reinforced seawater sea-sand mortar (BFRP/SSM) beam specimens

    Specimen IDSpan/
    mm
    Shear span/
    mm
    Shear span
    ratio
    Height/
    mm
    Width/
    mm
    Cover
    thickness/mm
    ConcreteStirrup
    ratio/%
    Longitudinal tensile
    reinforcement ratio/%
    BFRP/SSM-67-1.9 900 300 1.9 200 150 23 SSM-0.21 0.67 3.17
    BFRP/SSE-00-1.9 900 300 1.9 200 150 31 SSE-0.21 3.17
    BFRP/SSE-37-1.9 900 300 1.9 200 150 25 SSE-0.21 0.37 3.17
    BFRP/SSM-67-1.3 900 200 1.3 200 150 23 SSM-0.21 0.67 3.17
    BFRP/SSE-00-1.3 900 200 1.3 200 150 31 SSE-0.21 3.17
    BFRP/SSE-37-1.3 900 200 1.3 200 150 25 SSE-0.21 0.37 3.17
    Notes: BFRP/SSE-yx—SSE with shear span ratio of x and stirrup ratio of y; BFRP/SSM-yx—Seawater sea-sand mortar with shear span ratio of x and stirrup ratio of y.
    下载: 导出CSV

    表  3  FRP筋力学性能指标

    Table  3.   Mechanical properties of FRP bars

    Type of FRP barDiameter/mmElastic modulus/GPaTensile strength/MPaTensile strain capacity/%
    BFRP bar 6 53 1190 2.22
    8 57 1127 2.14
    18 57 1319 2.32
    下载: 导出CSV

    表  4  BFRP/SSE梁和BFRP/SSM梁的特征荷载

    Table  4.   Characteristic loads of the tested BFRP/SSE and BFRP/SSM beams

    Specimen IDCracking load/kNShear capacity/kNShear capacity/Cracking loadService load/kN
    BFRP/SSM-67-1.9 11.5 106.37 9.25 141.82
    BFRP/SSE-00-1.9 11.0 113.15 10.29 150.87
    BFRP/SSE-37-1.9 12.5 169.47 13.56 225.96
    BFRP/SSM-67-1.3 9.0 123.54 13.73 164.71
    BFRP/SSE-00-1.3 16.5 214.56 13.00 286.08
    BFRP/SSE-37-1.3 16.0 246.15 15.38 328.20
    Notes: Shear capacity is equal to half of peak load. Service load is equal to the peak load divided by 1.5.
    下载: 导出CSV

    表  5  BFRP/SSE梁模拟结果与试验结果的比较

    Table  5.   Comparison between simulation results and experimental results of BFRP/SSE beams

    Specimen IDShear capacity/kNMid-span deflection at shear capacity/mm
    Experimental
    result
    Simulation
    result
    Deviation/
    %
    Experimental
    result
    Simulation
    result
    Deviation/
    %
    BFRP/SSE-00-1.9 113.15 104.31 −7.81 9.70 9.61 −0.93
    BFRP/SSE-37-1.9 169.47 166.93 −1.50 10.81 11.17 3.33
    BFRP/SSE-00-1.3 214.56 214.13 −0.20 8.75 9.40 7.43
    BFRP/SSE-37-1.3 246.15 241.70 −1.81 10.86
    下载: 导出CSV
  • [1] 李田雨, 刘小艳, 张玉梅, 等. 海水海砂制备活性粉末混凝土的碳化机理[J]. 材料导报, 2020, 34(8):8042-8050. doi: 10.11896/cldb.19010123

    LI Tianyu, LIU Xiaoyan, ZHANG Yumei, et al. Carbonization mechanism of reactive powder concrete with sea-water and sea sand[J]. Materials Reports,2020,34(8):8042-8050(in Chinese). doi: 10.11896/cldb.19010123
    [2] XIAO J Z, QIANG C B, NANNI A, et al. Use of sea-sand and seawater in concrete construction: Current status and future opportunities[J]. Construction and Building Mater-ials,2017,155:1101-1111. doi: 10.1016/j.conbuildmat.2017.08.130
    [3] JIANG J F, LUO J, YU J T, et al. Performance improvement of a fiber-reinforced polymer bar for a reinforced sea sand and seawater concrete beam in the serviceability limit state[J]. Sensors,2019,19(3):654. doi: 10.3390/s19030654
    [4] 王磊, 李威, 陈爽, 等. 海水浸泡对FRP筋-珊瑚混凝土粘结性能的影响[J]. 复合材料学报, 2018, 35(12):3458-3465.

    WANG Lei, LI Wei, CHEN Shuang, et al. Effects of sea water soaking on the bonding properties of FRP bars-coral concrete[J]. Acta Materiae Compositae Sinica,2018,35(12):3458-3465(in Chinese).
    [5] 华云涛, 尹世平, 王璐晨. 玄武岩纤维筋海水海砂混凝土梁承载性能及使用性能影响因素研究[J]. 建筑结构学报, 2021, 42(2):166-177.

    HUA Yuntao, YIN Shiping, WANG Luchen. Study on influence factors of bearing capacity and serviceability of BFRP reinforced seawater and sea-sand concrete beams[J]. Journal of Building Structures,2021,42(2):166-177(in Chinese).
    [6] LI V C, WANG S X, WU C. Tensile strain-hardening behavior of PVA-ECC[J]. ACI Materials Journal,2001,98(6):483-492.
    [7] 中华人民共和国住房和城乡建设部. 纤维增强复合材料工程应用技术规范: GB 50608—2020[S]. 北京: 中国计划出版社, 2020.

    Ministry of Housing and Urban-rural Development of the People's Republic of China. Technical code for infrastructure application of FRP composites: GB 50608—2020[S]. Beijing: China Planning Press, 2020(in Chinese).
    [8] LI V C, WANG S X. Flexural behaviors of glass fiber-reinforced polymer (GFRP) reinforced engineered cementitious composite beams[J]. ACI Materials Journal,2002,99(1):11-21.
    [9] YUAN F, PAN J L, LEUNG C K Y. Flexural behaviors of ECC and concrete/ECC composite beams reinforced with basalt fiber-reinforced polymer[J]. Journal of Composites for Construction,2013,17(5):591-602. doi: 10.1061/(ASCE)CC.1943-5614.0000381
    [10] 周甲佳, 姚少科, 景川, 等. FRP筋-ECC梁受弯性能[J]. 建筑科学与工程学报, 2020, 37(6):46-53.

    ZHOU Jiajia, YAO Shaoke, JING Chuan, et al. Flexural behavior of FRP-reinforced ECC beams[J]. Journal of Architecture and Civil Engineering,2020,37(6):46-53(in Chinese).
    [11] 葛文杰, 冯肖, 季翔, 等. 纤维增强复材筋增强工程用水泥基复合材料-混凝土复合梁受弯性能试验研究[J]. 工业建筑, 2017, 47(11):23-27.

    GE Wenjie, FENG Xiao, JI Xiang, et al. Experimental research on the flexural behavior of ECC-concrete compo-site beam reinforced with FRP bars[J]. Industrial Construction,2017,47(11):23-27(in Chinese).
    [12] YU J T, LIU K K, XU Q F, et al. Feasibility of using seawater to produce ultra-high ductile cementitious composite for construction without steel reinforcement[J]. Structural Concrete,2019,20(2):774-785. doi: 10.1002/suco.201800116
    [13] HUANG B T, YU J, WU J Q, et al. Seawater sea-sand engi-neered cementitious composites (SS-ECC) for marine and coastal applications[J]. Composites Communications,2020,20:100353. doi: 10.1016/j.coco.2020.04.019
    [14] 时金娜, 赵燕茹, 郝松, 等. 基于DIC技术的高温后混凝土变形性能[J]. 建筑材料学报, 2019, 22(4):584-591. doi: 10.3969/j.issn.1007-9629.2019.04.012

    SHI Jinna, ZHAO Yanru, HAO Song, et al. Deformation behavior of concrete under uniaxial compression after high temperature by DIC technology[J]. Journal of Building Materials,2019,22(4):584-591(in Chinese). doi: 10.3969/j.issn.1007-9629.2019.04.012
    [15] Japan Society of Civil Engineers. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks[S]. Tokyo: Japan Society of Civil Engineers, 2008.
    [16] 王义超, 余江滔, 魏琳卓, 等. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16):2665-2670. doi: 10.11896/cldb.18070111

    WANG Yichao, YU Jiangtao, WEI Linzhuo, et al. Water-resistance property of ultra-high toughness magnesium oxychloride cement-based composite[J]. Materials Reports,2019,33(16):2665-2670(in Chinese). doi: 10.11896/cldb.18070111
    [17] ZHOU J J, PAN J L, LEUNG C K Y. Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression[J]. Journal of Materials in Civil Engineering,2015,27(1):04014111. doi: 10.1061/(ASCE)MT.1943-5533.0001034
    [18] 张锐, 孟庆利, 何畏, 等. 考虑箍筋效应的PP-ECC梁抗剪试验研究[J]. 中国公路学报, 2017, 30(12):234-241. doi: 10.3969/j.issn.1001-7372.2017.12.025

    ZHANG Rui, MENG Qingli, HE Wei, et al. Experimental investigation on shear behavior of PP-ECC beams by consi-dering effect of stirrup[J]. China Journal of Highway and Transport,2017,30(12):234-241(in Chinese). doi: 10.3969/j.issn.1001-7372.2017.12.025
    [19] TOMLINSON D, FAM A. Performance of concrete beams reinforced with basalt FRP for flexure and shear[J]. Jour-nal of Composites for Construction,2015,19:04014036. doi: 10.1061/(ASCE)CC.1943-5614.0000491
    [20] OZCEBE G, ERSOY U, TANKUT T. Evaluation of minimum shear reinforcement requirements for higher strength concrete[J]. ACI Structural Journal,1999,96(3):361-368.
    [21] HAN T S, FEENSTRA P H, BILLINGTON S L. Simulation of highly ductile fiber-reinforced cement based composite components under cyclic loading[J]. ACI Structural Jour-nal,2003,100(6):749-757.
    [22] 余江滔, 崔璨, 叶俊宏, 等. 基于ABAQUS模拟仿生贝壳珍珠母梁的弯曲性能[J]. 建筑材料学报, 2021, 24(6):1187-1192. doi: 10.3969/j.issn.1007-9629.2020.01.004

    YU Jiangtao, CUI Can, YE Junhong, et al. Flexural perfor-mance of bio-inspired stacked beams: A numerical study based on ABAQUS[J]. Journal of Building Materials,2021,24(6):1187-1192(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.01.004
    [23] CARREIRA D J, CHU K H. Stress-strain relationship for plain concrete in compression[J]. Journal of the American Concrete Institute,1985,82(6):797-804.
    [24] LI L Z, CAI Z W, YU K Q, et al. Performance-based design of all-grade strain hardening cementitious composites with compressive strengths from 40 MPa to 120 MPa[J]. Cement and Concrete Composites,2019,97:202-217. doi: 10.1016/j.cemconcomp.2019.01.001
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  994
  • HTML全文浏览量:  396
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-28
  • 修回日期:  2021-08-21
  • 录用日期:  2021-08-25
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回