留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低密度纤维增强酚醛气凝胶复合材料的力学特性及断裂机制

张鸿宇 钱震 牛波 张亚运 龙东辉

张鸿宇, 钱震, 牛波, 等. 低密度纤维增强酚醛气凝胶复合材料的力学特性及断裂机制[J]. 复合材料学报, 2022, 39(8): 3663-3673. doi: 10.13801/j.cnki.fhclxb.20210909.002
引用本文: 张鸿宇, 钱震, 牛波, 等. 低密度纤维增强酚醛气凝胶复合材料的力学特性及断裂机制[J]. 复合材料学报, 2022, 39(8): 3663-3673. doi: 10.13801/j.cnki.fhclxb.20210909.002
ZHANG Hongyu, QIAN Zhen, NIU Bo, et al. Mechanical properties and fracture mechanisms of low-density fiber preforms reinforced phenolic aerogel composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3663-3673. doi: 10.13801/j.cnki.fhclxb.20210909.002
Citation: ZHANG Hongyu, QIAN Zhen, NIU Bo, et al. Mechanical properties and fracture mechanisms of low-density fiber preforms reinforced phenolic aerogel composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3663-3673. doi: 10.13801/j.cnki.fhclxb.20210909.002

低密度纤维增强酚醛气凝胶复合材料的力学特性及断裂机制

doi: 10.13801/j.cnki.fhclxb.20210909.002
基金项目: 国家自然科学基金(22078100)
详细信息
    通讯作者:

    龙东辉,博士,教授,博士生导师,研究方向为热防护材料与技术 E-mail:longdh@mail.ecust.edu.cn

  • 中图分类号: TB332

Mechanical properties and fracture mechanisms of low-density fiber preforms reinforced phenolic aerogel composites

  • 摘要: 分别以低密度玻璃纤维、石英纤维、碳纤维针刺预制体为增强体,制备出不同的纤维针刺预制体增强酚醛气凝胶复合材料(NF/PA),研究了纤维种类对材料力学性能及断裂行为的影响。结果表明:酚醛气凝胶与纤维预制体形成良好的界面结构,微观上呈现“珠串”状三维开孔网络结构特征,因而复合材料具有较低的密度(0.45 g/cm3)和室温热导率(0.046~0.067 W/(m·K))。在拉伸与压缩过程中,基于NF/PA明显的塑性形变现象,分析了裂纹扩展过程中材料所吸收的能量,发现纤维种类会显著影响界面特性进而影响材料断裂和失效机制。其中,碳纤维的界面结合强度小于酚醛气凝胶极限剪切应力,在断裂过程中纤维先与酚醛气凝胶脱粘,表现为“滑脱界面”;玻璃纤维与石英纤维界面结合强度大于酚醛气凝胶极限剪切应力,在断裂过程中酚醛气凝胶先被破坏,表现为“粘性界面”。相较于玻璃纤维、石英纤维,碳纤维对NF/PA增韧、补强效果较优。

     

  • 图  1  纤维针刺预制体(NF) (a) 与纤维针刺预制体增强酚醛气凝胶复合材料(NF/PA) (b) 的结构示意图;玻璃纤维针刺预制体增强酚醛气凝胶复合材料(NGF/PA) (c)、石英纤维针刺预制体增强酚醛气凝胶复合材料(NQF/PA) (d)、碳纤维针刺预制体增强酚醛气凝胶复合材料(NCF/PA) (e) 的图像;NCF/PA的金相显微组织图像 (f)

    Figure  1.  Sketch of needled fiber preform (NF) (a) and NF reinforced phenolic aerogel composite (NF/PA) (b); Photographs of needled glass fiber preforms reinforced phenolic aerogel composites (NGF/PA) (c), needled quartz fiber preforms reinforced phenolic aerogel composites (NQF/PA) (d), and needled carbon fiber preforms reinforced phenolic aerogel composites (NCF/PA) (e); Metallographic image of NCF/PA (f)

    图  2  NCF/PA (a)、NQF/PA (b)、NGF/PA (c) 复合材料的SEM图像

    Figure  2.  SEM images of NCF/PA (a), NQF/PA (b) and NGF/PA (c)

    图  3  NF/PA拉伸应力-应变曲线 (a) 及NCF/PA 弹性阶段 (b)、塑性阶段 ((c), (d)) 金相显微组织图像

    Figure  3.  Tensile stress-strain curves of NF/PA (a), metallographic of NCF/PA at elastic stage (b) and plastic stage ((c), (d))

    图  4  NCF/PA (a)、NQF/PA (b)、NGF/PA (c)失效断裂分析图(从左至右依次为复合材料断裂处、复合材料断面、断面纤维SEM图像)

    Figure  4.  Failure fracture analysis diagram of NCF/PA (a), NQF/PA (b) and NGF/PA (c) (From left to right are fracture of composite, cross section of the composite and SEM images of fiber)

    图  5  NF/PA的“滑脱”界面(a)和“粘性”界面(b)形成机制

    Figure  5.  Formation mechanism of "slippage" interface (a) and "stickiness" interface (b) of NF/PA

    图  6  (a) NF/PA压缩应力-应变曲线 (插图为NF/PA弹性段应力-应变曲线); ((b), (c)) 塑性段金相显微组织图像;((d), (e)) 初始阶段以及压实阶段酚醛气凝胶SEM图像

    Figure  6.  (a) Compressive stress-strain curves of NF/PA (Illustration is elastic segments stress-strain curves of NF/PA); ((b), (c)) Metallographic microstructure of the plastic section; ((d), (e)) SEM images of phenolic aerogel at initial and compaction stage

    图  7  NCF/PA (a)、NQF/PA (b)、NGF/PA (c) 的压缩破坏试样俯视图

    Figure  7.  Top views of compression failure specimens of NCF/PA (a), NQF/PA (b) and NGF/PA (c)

    图  8  NCF/PA (a)、NQF/PA (b)、NGF/PA (c) 的压缩破坏分析图(从左至右依次为压缩试样、压缩破坏试样、试样裂纹处SEM图像)

    Figure  8.  Compression failure analysis diagrams of NCF/PA (a), NQF/PA (b) and NGF/PA (c) (From left to right: Compressed sample, sample cracks, SEM images of compression failure samples)

    表  1  NF/PA的物理性能参数

    Table  1.   Physical parameters of NF/PA

    CompositesDensity/
    (g·cm−3)
    Thermal conductivity/
    (W·(m·K)−1)
    Tensile strength/
    MPa
    Tensile modulus/
    MPa
    Compressive
    strength/MPa
    Compressive
    modulus/MPa
    NCF/PA 0.45 0.067 16.6 2939 362 86
    NQF/PA 0.45 0.046 13.5 1103 203 56
    NGF/PA 0.45 0.045 8.8 1163 117 50
    下载: 导出CSV

    表  2  NF/PA的压缩性能

    Table  2.   Compression performance of NF/PA

    CompositeCompressive strength
    (5%)/MPa
    Compressive strength
    (10%)/MPa
    Compressive strength
    (Elasticity)/MPa
    Compressive strength
    (Plasticity)/MPa
    Compressive strength
    (Densification)/MPa
    NCF/PA 2.57 3.21 1.03 4.35 362
    NQF/PA 2.20 2.80 1.09 3.71 203
    NGF/PA 2.19 2.91 1.20 3.96 117
    下载: 导出CSV
  • [1] 喻成璋, 刘卫华. 高超声速飞行器气动热预测技术研究进展[J]. 航空科学技术, 2021, 32(2): 14-21.

    YU Chengzhang, LIU Weihua. Research status of aeroheating prediction technology for hypersonic aircraft[J]. Aeronautical Science and Technology, 2021, 32(2): 14-21(in Chinese).
    [2] ALLEN H J. Hypersonic flight and the reentry problem: The twenty-first wright brothers lecture[J]. Journal of the Aerospace Sciences,1958,25(4):217-227. doi: 10.2514/8.7600
    [3] KARIMI M S, OBOODI M J. Investigation and recent deve-lopments in aero dynamic heating and drag reduction for hypersonic flows[J]. Heat and Mass Transfer, 2019, 55(2): 547-569.
    [4] 韩杰才, 洪长青, 张幸红, 等. 新型轻质热防护复合材料的研究进展[J]. 载人航天, 2015, 21(4): 315-321

    HAN Jiecai, HONG Changqing, ZHANG Xinghong, et al. Research progress of novel lightweight thermal protection composites[J]. Manned Spaceflight, 2015, 21(4): 315-321(in Chinese).
    [5] 薛华飞, 姚秀荣, 程海明, 等. 热防护用轻质烧蚀材料现状与发展[J]. 哈尔滨理工大学学报, 2017, 22(1):123-128.

    XUE Huafei, YAO Xiurong, CHENG Haiming, et al. Current status and development of light ablative materials for thermal protection[J]. Journal of Harbin University of Science and Technology,2017,22(1):123-128(in Chinese).
    [6] LACHAUD J, COZMUTA I, MANSOUR N N. Multiscale approach to ablation modeling of phenolic impregnated carbon ablators[J]. Journal of Spacecraft and Rockets,2010,47(6):910-921. doi: 10.2514/1.42681
    [7] NATALI M, PURI I, KENNY J M, et al. Microstructure and ablation behavior of an affordable and reliable nanostructured phenolic impregnated carbon ablator (PICA)[J]. Polymer Degradation and Stability, 2017, 141: 84-96.
    [8] TRAN H K, RASKY D J, ESFAHANI L. Thermal response and ablation characteristics of lightweight ceramic ablators[J]. Journal of Spacecraft and Rockets,1994,31(6):993-998. doi: 10.2514/3.26549
    [9] RIVIER M, LACHAUD J, CONGEDO P M. Ablative thermal protection system under uncertainties including pyrolysis gas composition[J]. Aerospace Science and Technology, 2019, 84: 1059-1069.
    [10] MEURISSE J B E, LACHAUD J, PANERAI F, et al. Multidimensional material response simulations of a full-scale tiled ablative heat shield[J]. Aerospace Science and Technology, 2018, 76: 497-511.
    [11] LIU X, SUN J, YUAN F, et al. Lightweight, flexible, and heat-insulated phenolic impregnated carbon ablator (PICA) with adjustable flexibility and high compressive resilience property[J]. Journal of Applied Polymer Science, 2022, 139(9): 51712.
    [12] ZHNG J, FANG G D, YANG L W, et al. Comparison of abla-tive and compressive mechanical behavior of several PICA-like ablative materials[J]. Science China Technological Sciences, 2020, 63(8): 1478-1486.
    [13] 程海明. 新型超轻质碳/酚醛烧蚀复合材料的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    CHENG Haiming. Preparation and properties of novel ultra-lightweight carbon/phenolic ablation composites[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [14] WHITE S M. High-temperature spectrometer for thermal protection system radiation measurements[J]. Journal of Spacecraft and Rockets, 2010, 47(1): 21-28.
    [15] 刘建军, 李铁虎, 郝志彪, 等. 针刺炭布/网胎复合织物的组分形态及性能研究[J]. 固体火箭技术, 2005, 28(4):299-302. doi: 10.3969/j.issn.1006-2793.2005.04.016

    LIU Jianjun, LI Tiehu, HAO Zhibiao, et al. Study on composition morphology and properties of acupuncture carbon fabric/mesh pad composite fabric[J]. Solid Rocket Technology,2005, 28(4):299-302(in Chinese). doi: 10.3969/j.issn.1006-2793.2005.04.016
    [16] 朱召贤, 董金鑫, 贾献峰, 等. 酚醛气凝胶/炭纤维复合材料的结构与烧蚀性能[J]. 新型炭材料, 2018, 33(4):370-376.

    ZHU Zhaoxian, DONG Jinxin, JIA Xianfeng, et al. Structure and ablation properties of phenolic aerogel/carbon fiber composites[J]. New Carbon Materials,2018,33(4):370-376(in Chinese).
    [17] 董金鑫, 朱召贤, 姚鸿俊, 等. 酚醛气凝胶/碳纤维复合材料的结构调控及性能研究[J]. 化工学报, 2018, 69(11):4896-4901.

    DONG Jinxin, ZHU Zhaoxian, YAO Hongjun, et al. Structure and properties of phenolic aerogel/carbon fiber composites[J]. Chinese Journal of Chemical Engineering and Technology,2018,69(11):4896-4901(in Chinese).
    [18] COX H L. The elasticity and strength of paper and other fibrous materials[J]. British Journal of Applied Physics,1952,3(3):72-79. doi: 10.1088/0508-3443/3/3/302
    [19] FU S Y, LAUKE B. An analytical characterization of the anisotropy of the elastic modulus of misaligned short-fiber-reinforced polymers[J]. Composites Science and Tech-nology,1998,58(12):1961-1972. doi: 10.1016/S0266-3538(98)00033-5
    [20] 唐国宏, 陈昌麒. 界面断裂[J]. 复合材料学报, 1994, 11(3):43-49.

    TANG Guohong, CHEN Changqi. Interfacial fracture[J]. Acta Materiae Compositae Sinica,1994,11(3):43-49(in Chinese).
    [21] NIE J, XU Y, ZHANG L, et al. Microstructure and tensile behavior of multiply needled C/SiC composite fabricated by chemical vapor infiltration[J]. Journal of Materials Processing Technology,2009,209(1):572-576. doi: 10.1016/j.jmatprotec.2008.02.035
    [22] 方光武, 高希光, 陈晶, 等. 加载循环数对2D针刺C/SiC复合材料疲劳剩余强度的影响[J]. 复合材料学报, 2016, 33(1):149-154.

    FANG Guangwu, GAO Xiguang, CHEN Jing, et al. Effect of loading cycles on fatigue residual strength of 2D needle punched C/SiC composites[J]. Acta Materiae Compositae Sinica,2016,33(1):149-154(in Chinese).
    [23] 邢亚娟, 孙波, 高坤, 等. 航天飞行器热防护系统及防热材料研究现状[J]. 宇航材料工艺, 2018, 48(4):9-15.

    XING Yajuan, SUN Bo, GAO Kun, et al. Research status of thermal protection system and thermal protective materials for space vehicle[J]. Aerospace Materials & Technology,2018,48(4):9-15(in Chinese).
    [24] 中国国家标准化管理委员会. 纤维增强塑料 拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastic composites-Determination of tensile properties: GB/T 1447—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [25] 中国国家标准化管理委员会. 纤维增强塑料 压缩性能试验方法: GB/T 1448—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastic composites-Determination of compressive properties: GB/T 1448—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [26] 张冬梅, 叶金蕊, 刘奎, 等. 孔隙微观特征影响CFRP力学性能的细观综述[J]. 复合材料学报, 2013, 30(S1):118-123.

    ZHANG Dongmei, YE Jinrui, LIU Kui, et al. Microscopic review of influence of pore microstructure on mechanical properties of CFPR[J]. Acta Materiae Compositae Sinica,2013,30(S1):118-123(in Chinese).
    [27] 刘克杰, 朱华兰, 彭涛, 等. 无机特种纤维介绍(一)[J]. 合成纤维, 2013, 42(5):32-37.

    LIU Kejie, ZHU Hualan, PENG Tao, et al. The introduction of inorganic special fiber(I)[J]. Synthetic Fiber,2013,42(5):32-37(in Chinese).
    [28] 张焱, 祖群. 航空领域用特种高性能玻璃纤维材料[J]. 航空制造技术, 2014, 57(15): 130-131.

    ZHANG Yan, ZU Qun. Special high-performance glass fiber materials used in aviation field[J]. Aeronautical Manufacturing Technology, 2014, 57(15): 130-131(in Chinese).
    [29] AVESTON J, COOPER G A, KELLY A. The properties of fiber composites[C]//National Physical Laboratory Conference Proceeding. England: IPS Science & Technology Press, 1971: 1254-1262.
    [30] 张盼. 三维针刺C/C复合材料的微结构建模及力学性能预测[D]. 西安: 西北工业大学, 2016.

    ZHANG Pan. Microstructure modeling and mechanical properties prediction of three-dimensional needled C/C composites[D]. Xi’an: Northwestern Polytechnical University, 2016(in Chinese).
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1633
  • HTML全文浏览量:  903
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 修回日期:  2021-08-16
  • 录用日期:  2021-08-20
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回