Polyaniline-corn husk fiber composite based flexible self-standing electrode: Preparation and electrochemical properties
-
摘要: 为满足可穿戴电子设备日益提升的要求,低成本、高性能柔性超级电容器成为研究的热点。在玉米苞叶纤维(CHF)基材表面原位生长聚苯胺(PANI),继而以聚乙烯醇/硫酸(PVA/H2SO4)作为凝胶,通过简单的冻融法制备聚苯胺-玉米苞叶纤维柔性自支撑电极(PANI-CHF-GEL)。PANI-CHF-GEL显示出优异的力学性能(断裂强度为259 kPa,断裂伸长率为121%)和较好的韧性(断裂能为0.167 MJ·cm−3)。采用PVA/H2SO4 凝胶作为电解质组装得到的PANI-CHF-GEL//PANI-CHF-GEL对称固态超级电容器具有优越的电化学储能性能:在3.00 mA·cm−2的电流密度下,面积比电容高达1789.74 mF·cm−2,功率密度为0.34 mW·cm−2,能量密度为3.51 mW·h·cm−2。此外,该器件还显示出良好的柔性,弯曲90° 时仍能保持其初始性能,表明了其在可穿戴电子设备潜在的应用前景。Abstract: In order to meet the increasing requirements of wearable electronic devices, low-cost, high-performance flexible supercapacitors have become a research hotspot. In this work, flexible, self-standing PANI-CHF-GEL electrode was obtained by growing polyaniline (PANI) on the surface of corn husk fiber (CHF) and mixed with polyvinyl alcohol/sulfuric acid (PVA/H2SO4) gel, followed by a facile frozen-thawing method. PANI-CHF-GEL exhibits excellent mechanical properties (a fracture strength of 259 kPa at a fracture strain of 121%) and good toughness (a fracture energy of 0.167 MJ·cm−3). Employing PVA/H2SO4 as the gel electrolyte, the symmetric PANI-CHF-GEL//PANI-CHF-GEL solid supercapacitor delivers an areal capacitance of 1789.74 mF·cm−2, a power density of 0.34 mW·cm−2, and a corresponding energy density of 3.51 mW·h·cm−2 (@3.00 mA·cm−2). Moreover, the device retains its original properties even bent 90°, indicating its promise potentials for wearable electronics.
-
Key words:
- corn husk fiber /
- polyaniline /
- composites /
- flexibility /
- self-standing /
- solid supercapacitor /
- electrochemical
-
图 2 CH、CHF、PANI-CHF及PANI-CHF-GEL电极的SEM图像:CH (×100) (a);CHF (×100) (b);CHF (×500) (c);PANI-CHF (×1000) (d);PANI-CHF (×5000) (e);PANI-CHF-GEL (×1000) (f) (黄色方框显示其特征结构)
Figure 2. SEM images of CH (×100) (a), CHF (×100) (b), CHF (×500) (c), PANI-CHF (×1000) (d), PANI-CHF (×5000) (e), PANI-CHF-GEL (×1000) (f) (Yellow squares indicate the characteristic structure)
图 5 N/PANI-CHF-GEL、PANI-GEL、PANI-CHF-GEL的CV曲线(@20 mV·s−1) (a)、GCD曲线(@20 mA·cm−2) (b);PANI-CHF-GEL的CV曲线(c)、GCD曲线(d)、EIS谱图(e)及循环稳定性(@20 mA·cm−2, 内嵌图为不同循环圈数的GCD曲线) (f)
Figure 5. CV curves (@20 mV·s−1) (a) and GCD curves (@20 mA·cm−2) (b) of N/PANI-CHF-GEL, PANI-GEL, PANI-CHF-GEL; CV curves (c), GCD curves (d), EIS curve (e), and cycling stability (@ 20 mA·cm−2, the inset is the GCD curve at different number of cycles) (f) of the PANI-CHF-GEL electrode
N/PANI-CHF-GEL—PANI-CHF-GEL electrode without PVDF and ACET added
图 6 PANI-CHF-GEL//PANI-CHF-GEL对称固态超级电容器的CV图(a)、GCD图(b)、EIS谱图(c)及循环稳定性(@20 mA·cm−2,内嵌图为不同循环圈数的实际GCD曲线) (d),器件在不同弯曲角度下的CV图(e)及实物展示(f)
Figure 6. CV curves (a), GCD curves (b), EIS curve (c), and cycling stability (@ 20 mA·cm−2, the embedded graph is the actual GCD curve with different number of cycles) (d) of the symmetric PANI-CHF-GEL//PANI-CHF-GEL solid supercapacitor. The CV curves (e) and photos (f) of the supercapacitor under different bending angles
表 1 PANI-CHF-GEL基底电容器同其他文献报道的柔性超级电容器的电化学性能对比
Table 1. Comparison of PANI-CHF-GEL based supercapacitor with previously reported flexible supercapacitors
Electrode Substrate Areal capacitance/
(mF·cm−2)Energy density/
(mW·h·cm−2)Power density/
(mW·cm−2)Ref. PANI-CHF-GEL NA 1789.74 3.51 0.34 This work CNC@MoS2 Carbon cloths 120.70 0.016 9.30 [19] rGO/TA Filter paper 40.37 3.60×10−3 107.60×10−3 [20] MnO2/graphite Tape 577.50 16.80×10−3 16.00 [21] PPy-rGO-PPy Cu:Ni-PET 684.00 95.00×10−3 — [22] PPy/rGO PET 230.00 11.00×10−3 0.03 [23] Notes: PANI-CHF-GEL—Polyaniline-corn husk fiber-PVA/H2SO4; CNC@MoS2—Carbon nanocones on carbon cloths@MoS2; rGO/TA—Reduced graphene oxide/Tannin; PPy-rGO-PPy—Polypyrrole-reduced graphite oxide-polypyrrole; Cu:Ni-PET—Cu:Ni-polyethylene terephthalate; PPy/rGO—Polypyrrole/Reduced graphite oxide. -
[1] CHOI C, KIM S H, SIM H J, et al. Weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors[J]. Scientific Reports,2015,5:9387. doi: 10.1038/srep09387 [2] WANG C, HU K, LI W, et al. Wearable wire-shaped symmetric supercapacitors based on activated carbon-coated graphite fibers[J]. ACS Applied Materials & Interfaces,2018,10(40):34302-34310. doi: 10.1021/acsami.8b12279 [3] 陈美玉, 孙润军, 夏斌斌, 等. 玉米苞叶纤维可降解育果袋材料制备及其性能分析[J]. 农业工程学报, 2021, 37(5):248-255. doi: 10.11975/j.issn.1002-6819.2021.05.029CHEN Meiyu, SUN Runjun, XIA Binbin, et al. Preparation of a degradable fruit bagging material from corn bracts and its relative performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2021,37(5):248-255(in Chinese). doi: 10.11975/j.issn.1002-6819.2021.05.029 [4] LI Z, GONG L. Research progress on applications of polyaniline (PANI) for electrochemical energy storage and conversion[J]. Materials (Basel),2020,13(3):13-45. [5] LEI T, GUAN M, LIU J, et al. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(20):5107-5112. doi: 10.1073/pnas.1701478114 [6] CHEN L F, HUANG Z H, LIANG H W, et al. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose[J]. Energy & Environmental Science,2013,6(11):42366. [7] LU C, CHEN X. Latest advances in flexible symmetric supercapacitors: From material engineering to wearable applications[J]. Accounts of Chemical Research,2020,53(8):1468-1477. doi: 10.1021/acs.accounts.0c00205 [8] GUO L, MA W B, WANG Y, et al. A chemically crosslinked hydrogel electrolyte based all-in-one flexible supercapacitor with superior performance[J]. Journal of Alloys and Compounds,2020,843:155895. doi: 10.1016/j.jallcom.2020.155895 [9] 韦会鸽, 李桂星, 万同, 等. 聚乳酸基聚苯胺柔性可降解超级电容器的制备及性能[J]. 复合材料学报, 2022, 39(1):193-202.WEI Huige, LI Guixing, WAN Tong, et al. Polyaniline growing on polylactic acid substrate towards flexible and biodegradable supercapacitors[J]. Acta Materiae Compositae Sinica,2022,39(1):193-202(in Chinese). [10] WEI H, WANG H, LI A, et al. Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors[J]. Journal of Alloys and Compounds,2020,820:153111. doi: 10.1016/j.jallcom.2019.153111 [11] LIAO H, LIU Y, WANG Q, et al. Structure and properties of porous poly(vinyl alcohol) hydrogel beads prepared through a physical-chemical crosslinking method[J]. Journal of Applied Polymer Science,2018,135(26):1-9. [12] 冯龙, 金克霞, 刘杏娥, 等. 黄藤细胞壁微纤丝取向偏振光拉曼光谱研究[J]. 光谱学与光谱分析, 2019, 39(9):2758-2762.FENG Long, JIN Kexia, LIU Xinge, et al. Studyt on microfibrils orientation in Daemonorops jekinsiana cell wall by polarized laser raman spectroscopy[J]. Spectroscopy and Spectral Analysis,2019,39(9):2758-2762(in Chinese). [13] 刘杏娥, 金克霞, 崔贺帅, 等. 黄藤细胞壁木质素区域化学分子光谱成像研究[J]. 光谱学与光谱分析, 2017, 37(10):3138-3144.LIU Xinge, JIN Kexia, CUI Heshuai, et al. The lignin topochemistry of Daemonorops margaritae (Hance) Becc. by molecular spectroscopic imaging[J]. Spectroscopy and Spectral Analysis,2017,37(10):3138-3144(in Chinese). [14] 祁明辉, 易锬, 莫琪, 等. 硫酸水解辅助高压均质法制备小麦秸秆纳米纤维素[J]. 中国造纸学报, 2020, 35(3):1-8.QI Minghui, YI Tan, MO Qi, et al. Preparation of wheat straw nanocellulose by acid hydrolysis assisted high pressure homogenization[J]. Transactions of China Pulp and Paper,2020,35(3):1-8(in Chinese). [15] 吴迪超, 陈超, 侯兴隆, 等. 热解温度对纤维素和木质素成炭结构的影响[J]. 生物质化学工程, 2021, 55(3):1-9. doi: 10.3969/j.issn.1673-5854.2021.03.001WU Dichao, CHEN Chao, HOU Xinglong, et al. Effect of pyrolysis temperature on structures of chars forming from cellulose and lignin[J]. Biomass Chemical Engineering,2021,55(3):1-9(in Chinese). doi: 10.3969/j.issn.1673-5854.2021.03.001 [16] TCHOUANK TEKOU CAROL T, MOHAMMED J, BASANDRAI D, et al. X-band shielding of electromagnetic interference (EMI) by Co2Y barium hexaferrite, bismuth copper titanate (BCTO), and polyaniline (PANI) composite[J]. Journal of Magnetism and Magnetic Materials,2020,501:166433. doi: 10.1016/j.jmmm.2020.166433 [17] 郭云霞, 刘杰, 梁节英. 电化学改性对PAN基碳纤维表面状态的影响[J]. 复合材料学报, 2005, 22(3):49-54. doi: 10.3321/j.issn:1000-3851.2005.03.010GUO Yunxia, LIU Jie, LIANG Jieying. Effect of electrochemical modification on the surfacestate of pan-based carbon fibers[J]. Acta Materiae Compositae Sinica,2005,22(3):49-54(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.03.010 [18] SHENG Z H, SHAO L, CHEN J J, et al. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J]. American Chemical Society Nano,2020,5(6):4350-4358. [19] JIANG Z, ZHAI S, HUANG M, et al. 3D carbon nanocones/metallic MoS2 nanosheet electrodes towards flexible supercapacitors for wearable electronics[J]. Energy,2021,227:120419. doi: 10.1016/j.energy.2021.120419 [20] YANG C, YANG J, LIANG C, et al. Flexible supercapacitors with tunable capacitance based on reduced graphene oxide/tannin composite for wearable electronics[J]. Journal of Electroanalytical Chemistry,2021,894:115354. doi: 10.1016/j.jelechem.2021.115354 [21] YU N, XIONG R, WANG Y, et al. Facile fabrication of low-cost and scalable graphite tape as novel current collectors for flexible supercapacitors[J]. Journal of Alloys and Compounds,2021,861:158476. doi: 10.1016/j.jallcom.2020.158476 [22] BHARGAVA P, LIU W, POPE M, et al. Substrate comparison for polypyrrole-graphene based high-performance flexible supercapacitors[J]. Electrochimica Acta,2020,358:136846. doi: 10.1016/j.electacta.2020.136846 [23] BARAKZEHI M, MONTAZER M, SHARIF F, et al. A textile-based wearable supercapacitor using reduced graphene oxide/polypyrrole composite[J]. Electrochimica Acta,2019,305:187-196. doi: 10.1016/j.electacta.2019.03.058