留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢管高强再生混凝土叠合柱轴压性能

牛海成 高锦龙 吉珈琨 王兴国 张向冈

牛海成, 高锦龙, 吉珈琨, 等. 钢管高强再生混凝土叠合柱轴压性能[J]. 复合材料学报, 2022, 39(8): 3994-4004. doi: 10.13801/j.cnki.fhclxb.20210902.002
引用本文: 牛海成, 高锦龙, 吉珈琨, 等. 钢管高强再生混凝土叠合柱轴压性能[J]. 复合材料学报, 2022, 39(8): 3994-4004. doi: 10.13801/j.cnki.fhclxb.20210902.002
NIU Haicheng, GAO Jinlong, JI Jiakun, et al. Axial compression behavior of high-strength recycled concrete filled steel tubular composite columns[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3994-4004. doi: 10.13801/j.cnki.fhclxb.20210902.002
Citation: NIU Haicheng, GAO Jinlong, JI Jiakun, et al. Axial compression behavior of high-strength recycled concrete filled steel tubular composite columns[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3994-4004. doi: 10.13801/j.cnki.fhclxb.20210902.002

钢管高强再生混凝土叠合柱轴压性能

doi: 10.13801/j.cnki.fhclxb.20210902.002
基金项目: 国家自然科学基金(U1904188);河南省自然科学基金(182300410247)
详细信息
    通讯作者:

    牛海成,博士,副教授,研究方向为钢与混凝土组合结构方面 Email: niuhch@126.com

  • 中图分类号: TU398.9

Axial compression behavior of high-strength recycled concrete filled steel tubular composite columns

  • 摘要: 以混凝土种类、钢管截面形状和方钢管内是否设置十字形拉结筋为主要变化参数,完成了2个钢管高强普通混凝土叠合柱(CFSTRCC)和3个钢管高强再生CFSTRCC轴心受压试验,研究了钢管高强再生混凝土叠合柱与钢管高强普通混凝土叠合柱轴心受压性能差异。研究结果表明,钢管高强再生混凝土叠合柱损伤发展过程和破坏形态与钢管高强普通混凝土叠合柱相似,钢管高强再生混凝土叠合柱承载力较高,耗能能力较强,但外围钢筋混凝土剥落程度严重,延性较差。在方钢管内设置十字形拉结筋后,拉结筋增强了方钢管对核心混凝土的约束,延性得到显著改善,承载力和耗能亦提高显著,同时峰值荷载对应更大的峰值应变,材料利用更充分。在钢管截面积相等、材料强度接近的条件下,内置圆钢管的CFSTRCC与内置方钢管的CFSTRCC相比,具有更高的承载能力和耗能能力,表现出更好的延性。根据国内外相关规程对26个钢管再生CFSTRCC进行轴压承载力计算,结果表明CFSTRCC轴压承载力计算结果与实测结果吻合较好。

     

  • 图  1  CFSTRCC试件基本尺寸

    Figure  1.  Basic dimensions of CFSTRCC specimens

    图  2  试验加载装置

    Figure  2.  Test set-up

    图  3  百分表及应变测点布置

    Figure  3.  Layout of dialgage and strain gauges

    F—Load

    图  4  CFSTRCC试件破坏形态

    Figure  4.  Failure patterns of CFSTRCC specimens

    图  5  CFSTRCC荷载-轴向变形曲线

    Figure  5.  Axial load-deformation curves of CFSTRCC

    图  6  CFSTRCC荷载-应变曲线

    Figure  6.  Axial load-strain curves of CFSTRCC

    图  7  各CFSTRCC试件耗能值对比

    Figure  7.  Comparison of energy dissipation of CFSTRCC

    表  1  骨料物理性能

    Table  1.   Physical properties of aggregate

    Type of
    aggregate
    Particle size
    range/mm
    Moisture
    content/%
    Water
    absorption/%
    Pushing
    density/%
    Index of
    crushing/%
    Apparent
    density/(kg·m−3)
    NCA 5-25 1.0 0.93 1681 10.4 2798
    RCA 5-25 2.2 6.30 1274 12.7 2433
    Notes: NCA—Natural coarse aggregate; RCA—Recycled coarse aggregate.
    下载: 导出CSV

    表  2  混凝土配合比

    Table  2.   Design mix of concrete

    Water cement ratioMaterial consumption/(kg·m−3)
    CementSandNCARCAWaterFAMPWRA
    0.32 336.87 633.45 1126.15 0.00 154.00 48.13 96.25 2.41
    0.32 336.87 633.45 0.00 1126.15 154.00 48.13 96.25 2.41
    Notes: FA—Fly ash; MP—Mineral powder; WRA—Water reducing agent.
    下载: 导出CSV

    表  3  钢管混凝土叠合柱(CFSTRCC)试件主要参数

    Table  3.   Parameters of concrete-filled steel tube reinforced concrete columns (CFSTRCC) specimens

    SpecimenType of
    steel tube
    γ/%L/mmb/mmL/bD(B)/mmt/mm$ {\rho }_{{\rm{a}}} $/%θ$ {f}_{{\rm{c}}{\rm{u}}} $/MPaE/GPa
    NCCST Circular 0 1150 230 5 114 4.5 2.90 1.44 60.10 40.91
    RCCST Circular 100 1150 230 5 114 4.5 2.90 1.38 62.71 37.42
    NCSST Square 0 1150 230 5 100 4.0 2.90 1.45 60.10 40.91
    RCSST Square 100 1150 230 5 100 4.0 2.90 1.39 62.71 37.42
    RCSSTTB Square 100 1150 230 5 100 4.0 2.90 1.39 62.71 37.42
    Notes: NCCST and RCCST—Natural and recycled concrete specimen with circular steel tube, respectively; NCSST and RCSST—Natural and recycled concrete specimen with square steel tube, respectively; RCSSTTB—Recycled concrete specimen of cross-shaped tie bars installed in the square steel tube; γ—Replacement rate of recycled coarse aggregate; L—Height of specimen; b—Cross-sectional side length of specimen; D—Outer diameter of circular steel tube; B—Side length of square steel tube; t—Wall thickness of steel tube; $ {\rho }_{{\rm{a}}} $=$ {A}_{{\rm{a}}}/A $; $ {A}_{{\rm{a}}} $—Cross-sectional area of steel tube; A—Whole cross-sectional area of specimen; $ \theta $=$ {f}_{{\rm{a}}}{A}_{{\rm{a}}} /{f}_{{\rm{c}}{\rm{c}}}{A}_{{\rm{c}}{\rm{c}}}$; $ {f}_{{\rm{a}}} $—Yield strength of steel tube; $ {f}_{{\rm{c}}{\rm{c}}} $—Axial compressive strength of concrete filled steel tube; $ {A}_{{\rm{c}}{\rm{c}}} $—Cross-sectional area of concrete filled steel tube; $ {f}_{{\rm{c}}{\rm{u}}} $—Compressive strength of concrete; E—Elastic modulus of concrete.
    下载: 导出CSV

    表  4  钢材性能

    Table  4.   Material properties of steel

    Material typeD(B)/mmt/mm$ {f}_{{\rm{y}}}\left({f}_{{\rm{a}}}\right) $/MPa$ {f}_{{\rm{u}}} $/MPa
    Steel bar 6 495 705
    12 415 564
    Circular 114 4.5 369 472
    Square 100 4.0 378 487
    Notes: $ {f}_{{\rm{y}}} $—Yield strength of steel bar; $ {f}_{{\rm{u}}} $—Tensile strength of steel.
    下载: 导出CSV

    表  5  各CFSTRCC试件特征点试验结果

    Table  5.   Characteristic displacement of CFSTRCC specimens

    Specimen$ {\varDelta }_{{\rm{y}}} $/mm$ {\varDelta }_{{\rm{u}}} $/mm$ {\varDelta }_{{\rm{m}}} $/mmμ
    NCCST 3.8 4.0 6.2 1.63
    RCCST 5.0 5.5 6.5 1.30
    NCSST 4.1 4.2 6.1 1.49
    RCSST 5.1 5.8 6.3 1.23
    RCSSTTB 4.7 6.1 6.6 1.40
    Notes:$ {\varDelta }_{{\rm{y}}} $—Yield displacement; $ {\varDelta }_{{\rm{u}}} $—Peak displacement; $ {\varDelta }_{{\rm{m}}} $—Limit displacement; μ—Displacement ductility coefficient.
    下载: 导出CSV

    表  6  各CFSTRCC试件特征点耗能值

    Table  6.   Energy dissipation of CFSTRCC specimens

    SpecimenEy/(kN·mm)Eu/(kN·mm)Em/(kN·mm)
    NCCST 5575 5990 12188
    RCCST 7705 9263 13530
    NCSST 5370 5658 10617
    RCSST 7674 8985 11235
    RCSSTTB 7299 10993 13402
    Notes: $ {E}_{{\rm{y}}} $—Energy dissipation of yield point; $ {E}_{{\rm{u}}} $—Energy dissipation of peak point; $ {E}_{{\rm{m}}} $—Energy dissipation of limit point.
    下载: 导出CSV

    表  7  CFSTRCC试验值与计算值对比

    Table  7.   Comparison of test values and calculation values of CFSTRCC

    Data sourceSpecimenNu/kNChinese codesAmerican codesEuropean codesHAN et al[30]
    $ {N}_{{\rm{u}}.{\rm{c}}} $/kN$ {N}_{{\rm{u}}} $$ /{N}_{{\rm{u}}.{\rm{c}}} $$ {N}_{{\rm{u}}.{\rm{c}}} $/kN$ {N}_{{\rm{u}}} $$/ {N}_{{\rm{u}}.{\rm{c}}} $$ {N}_{{\rm{u}}.{\rm{c}}} $/kN$ {N}_{{\rm{u}}} $$ /{N}_{{\rm{u}}.{\rm{c}}} $$ {N}_{{\rm{u}}.{\rm{c}}} $/kN$ {N}_{{\rm{u}}} $$ /{N}_{{\rm{u}}.{\rm{c}}} $
    This
    paper
    NCCST 3000 3186 0.942 2773 1.082 3286 0.913 3335 0.900
    RCCST 3150 3277 0.961 2867 1.099 3395 0.928 3441 0.915
    NCSST 2900 3189 0.909 2774 1.045 3288 0.882 3337 0.869
    RCSST 3100 3279 0.976 2869 1.115 3397 0.942 3443 0.929
    RCSSTTB 3350 3279 1.022 2869 1.168 3397 0.986 3443 0.973
    Wu[31] CC1 2420 2435 0.994 1 812 1.336 2418 1.001 2488 1.028
    CC3 2328 2261 1.029 1 836 1.268 2360 0.986 2326 1.001
    CC4 2370 2551 0.929 2070 1.145 2647 0.895 2630 0.901
    CC5 2241 2226 1.007 1 820 1.231 2340 0.957 2292 0.978
    CC6 2448 2169 1.128 1791 1.366 2305 1.062 2236 1.095
    CC7 2582 2599 0.993 2165 1.192 2764 0.934 2698 0.957
    CC8 2463 2455 1.003 2 035 1.210 2605 0.946 2538 0.970
    CC9 2317 2429 0.954 2 010 1.153 2573 0.900 2510 0.923
    CC10 2406 2357 1.021 1 959 1.228 2511 0.958 2436 0.988
    CC11 2358 2436 0.968 2132 1.106 2726 0.865 2614 0.902
    CC12 2309 2471 0.934 2091 1.104 2675 0.863 2578 0.896
    CC13 2357 2484 0.949 2091 1.127 2675 0.881 2586 0.911
    CC14 2295 2497 0.919 2091 1.098 2675 0.858 2594 0.885
    CC15 2686 2296 1.170 1 972 1.362 2630 1.021 2453 1.095
    CC16 2868 2876 0.997 2389 1.200 3042 0.943 2998 0.957
    CC17 2879 2701 1.066 2265 1.271 2889 0.996 2819 1.021
    CC18 2686 2762 0.972 2389 1.124 3042 0.883 2924 0.918
    CC19 2853 2653 1.075 2241 1.273 2900 0.984 2771 1.030
    SS-1 2519 2088 1.206 1 913 1.187 2471 1.019 2203 1.144
    SS-2 2592 2066 1.255 1 891 1.192 2359 1.098 2176 1.191
    SS-3 2514 2414 1.041 2232 1.196 2781 0.904 2584 0.973
    Average 1.019 1.188 0.946 0.976
    Notes:$ {N}_{{\rm{u}}} $—Test results; $ {N}_{{\rm{u}}.{\rm{c}}} $—Calculation results; CC1-CC11—Built-in circular steel tube specimens with different replacement rate of recycled coarse aggregate; CC12-CC14—Built-in circular steel tube specimens with different stirrup spacing; CC15—Specimen column with reduced circular steel tube diameter; CC16-CC18—Specimen which increases the strength grade of concrete; CC19—Specimen with increased wall thickness of circular steel tube; SS-1-SS-3—Built-in square steel tube specimens with different replacement rate of recycled coarse aggregate.
    下载: 导出CSV
  • [1] DUAN H B, MILLER T R, LIU G, et al. Construction debris becomes growing concern of growing cities[J]. Waste Manage,2019,83:1-5. doi: 10.1016/j.wasman.2018.10.044
    [2] 邵鹏康, 韩旵国. 浅谈建筑垃圾的回收利用问题—关于再生混凝土的现代工程应用[J]. 中国科技信息, 2010(19):21-22.

    SHAO Pengkang, HAN Xingguo. Discussion on the recycling of construction waste-On the modern engineering application of recycled concrete[J]. China Science and Technology Information,2010(19):21-22(in Chinese).
    [3] GOLAFSHANI E M, BEHNOOD A. Automatic regression methods for formulation of elastic modulus of recycled aggregate concrete[J]. Applied Soft Computing,2018,64:377-400. doi: 10.1016/j.asoc.2017.12.030
    [4] CHINCHILLAS M J, ROSAS C C, ARREDOND-REA S P, et al. SEM image analysis in permeable recycled concretes with silica fume: A quantitative comparison of porosity and the ITZ[J]. Materials,2019,12(13):2201. doi: 10.3390/ma12132201
    [5] GOLAFSHANI E M, BEHNOOD A. Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete[J]. Journal of Cleaner Production,2018,176:1163-1176. doi: 10.1016/j.jclepro.2017.11.186
    [6] CHEN J, WANG Y Y, CHARLS W R, et al. Behavior of normal-strength recycled aggregate concrete filled steel tubes under combined loading[J]. Engineering Structures,2017,130:23-40. doi: 10.1016/j.engstruct.2016.09.046
    [7] 陈宗平, 张士前, 王妮, 等. 钢管再生混凝土轴压短柱受力性能的试验与理论分析[J]. 工程力学, 2013, 30(4):107-114. doi: 10.6052/j.issn.1000-4750.2011.09.0589

    CHEN Zongping, ZHANG Shiqian, WANG Ni, et al. Experimental study and theoretical analysis on axial compress capacity of recycled aggregate concrete-filled circle steeltube short column[J]. Engineering Mechanics,2013,30(4):107-114(in Chinese). doi: 10.6052/j.issn.1000-4750.2011.09.0589
    [8] 牛海成, 曹万林, 董宏英, 等. 钢管高强再生混凝土柱轴压性能试验研究[J]. 建筑结构学报, 2015, 36(6):128-136.

    NIU Haicheng, CAO Wanlin, DONG Hongying, et al. Experimental study on high-strength recycled concrete steel tube columns subjected to axial compression[J]. Journal of Building Structures,2015,36(6):128-136(in Chinese).
    [9] HAN L H, HOU C C, WANG Q L. Behavior of circular CFST stub columns under sustained load and chloride corrosion[J]. Journal of Constructional Steel Research,2014,103:23-36. doi: 10.1016/j.jcsr.2014.07.021
    [10] XU L, LIU Y B. Concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to ISO-834 standard fire: Experiment[J]. Advances Structural Engineering,2013,16(7):1263-1282. doi: 10.1260/1369-4332.16.7.1263
    [11] LEE H J, PARK H G, PARK S S, et al. Cyclic loading test for exterior beam-column joints of ceft columns[J]. Engineers Structures,2016,142(2):04015147.
    [12] CAI M, KE X J, SU Y S. Axial compressive performance of RAC-encased RACFST composite columns[J]. Engineers Structures,2020,210:110393. doi: 10.1016/j.engstruct.2020.110393
    [13] PARK H G, LEE H J, CHOR I R, et al. Concrete-filled steel tube columns encased with thin precast concrete[J]. Journal of Structural Engineering,2015,141(12):04015056.
    [14] 郭全全, 李芊, 章沛瑶, 等. 钢管混凝土叠合柱偏心受压承载力的计算方法[J]. 土木工程学报, 2014, 47(5):56-63.

    GUO Quanquan, LI Qian, ZHANG Peiyao, et al. Calculation for bearing capacity under eccentric compression of concrete-filled steel tube columns[J]. China Civil Engineering Journal,2014,47(5):56-63(in Chinese).
    [15] 康洪震, 钱稼茹. 钢管高强混凝土组合柱轴压承载力试验研究[J]. 建筑结构, 2011, 41(6):64-67.

    KANG Hongzhen, QIAN Jiaru. Experimental study on bearing capacity of steel tube high-strength concrete compo-site columns under axial compression[J]. Building Structure,2011,41(6):64-67(in Chinese).
    [16] 刘阳, 郭子雄, 贾磊鹏, 等. 核心钢管混凝土叠合短柱轴压性能及设计方法研究[J]. 建筑结构学报, 2015, 36(12):135-142.

    LIU Yang, GUO Zixiong, JIA Leipeng, et al. Experimental study on axial compression performance and design method of core steel tube reinforced concrete short columns[J]. Journal of Building Structures,2015,36(12):135-142(in Chinese).
    [17] 钱稼茹, 江枣. 钢管混凝土组合柱轴心受压承载力计算方法[J]. 工程力学, 2011, 28(4):49-57.

    QIAN Jiaru, JIANG Zao. Calculation method for axial compressive strength of steel tube-reinforce concrete compo-site columns[J]. Engineering Mechanics,2011,28(4):49-57(in Chinese).
    [18] 柯晓军, 苏益声, 商效瑀, 等. 钢管混凝土组合柱压弯性能试验及承载力计算[J]. 工程力学, 2018, 35(12):134-142.

    KE Xiaojun, SU Yisheng, SHANG Xiaoyu, et al. Strength calculation and eccentric compressive test of steel tube-reinforced concrete composite columns[J]. Engineering Mechanics,2018,35(12):134-142(in Chinese).
    [19] 陈宗平, 占东辉, 徐金俊. 再生粗骨料含量对再生混凝土力学性能的影响分析[J]. 工业建筑, 2015, 45(1):130-145.

    CHEN Zongping, ZHAN Donghui, XU Jinjun. Research on mechanical properties of recycled concrete using different recycled coarse aggregate replacement[J]. Industrial Construction,2015,45(1):130-145(in Chinese).
    [20] RIDAUAN A R M. The influence of recycled aggregate concrete on the compressive strength and drying shrinkage of concrete[C]//Proceedings of international conference on structural engineering, mechanics and computation. Cape Town, 2001: 1415-1421.
    [21] HANSEN T C. Strength of recycled aggregate concrete made from crushed concrete coarse aggregate[J]. Concrete International,1983(1):79-83.
    [22] CHENTNA M V, DARSHANA R B. Evaluation of modulus of elasticity for recycled coarse aggregate concrete[J]. International Journal of Engineering Science and Innovative Technology,2013,2(1):26-29.
    [23] YODA K, YOSHIKANE T. Recycled cement and recycled concrete in Japan[C]//Proceedings of the second international RILEM symposium on demolition and reuse of concrete and masonry. Tokyo, 1988: 527-536.
    [24] 齐岳. 核心高强混凝土柱力学性能[M]. 黑龙江: 黑龙江大学出版社, 2013.

    QI Yue. Mechanical properties of core high-concrete columns[M]. Heilongjiang: Heilongjiang University Press, 2013(in Chinese).
    [25] 中国工程建设标准化协会. 钢管混凝土叠合柱结构技术规程: T/CECS188—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Standards of China Engineering Construction Standardization Association. Technical specification for steel tube-reinforced concrete column structure: T/CECS188—2019[S]. Beijing: China Building Industry Press, 2019(in Chinese).
    [26] American Concrete Institute. Building code requirements for structural concrete and commentary: ACI318-11[S]. Detroit: American Concrete Institute International, 2011.
    [27] American Standards Association. Specification for structural steel buildings: ANSI/AISC 360-10[S]. Chicago: American Institute of Steel Construction (AISC), 2010.
    [28] European Committee for Standardization. Eurocode 2: Design of concrete structures-Part 1-1: General rules and rules for buildings: BS EN 1992-1-1 2004[S]. Brussels: European Committee for Standardization International, 2004.
    [29] European Committee for Standardization. Eurocode 4: Design of composite steel and concrete structures-Part 1-1: General rules-structural rules for buildings[S]. Brussels: European Committee for Standardization International, 2004.
    [30] HAN L H, AN Y F. Performance of concrete-encased CFST stub columns under axial compression[J]. Journal of Constructional Steel Research,2014,92:62-76.
    [31] 武骏宇. 钢管再生混凝土组合柱轴压性能试验研究[D]. 南宁: 广西大学, 2015.

    WU Junyu. Experimental study on axial compression performance of recycled concrete-filled steel tube composite columns[D]. Nanning: Guangxi University, 2015(in Chinese).
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  799
  • HTML全文浏览量:  379
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-21
  • 修回日期:  2021-08-15
  • 录用日期:  2021-08-19
  • 网络出版日期:  2021-09-02
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回