Preparation and thermophysical performance of organic phase change energy storage materials in cold chain transportation
-
摘要: 有机相变储能材料相变潜热高、化学性质稳定、无过冷度和相分离现象。通过对正癸酸、月桂酸甲酯、正癸醇、月桂酸及十四烷进行热力学分析并进行两两复配,得到正癸酸-月桂酸甲酯(摩尔比为30∶70)、正癸酸-正癸醇(摩尔比为36∶64)及月桂酸-十四烷(摩尔比为21∶79)三种二元有机复配物,其相变温度均在0~5℃且相变焓较高。利用聚N-异丙基丙烯酰胺(PNIPAM)凝胶对二元有机复配物分别吸附,得到一类适用于果品保质包装与物流技术的相变储能材料;并在凝胶制备过程中加入聚乙二醇1000 (PEG1000)致孔剂,可有效提高凝胶在二元有机复配物的溶胀度。结果表明,PNIPAM-40%PEG1000/正癸酸-月桂酸甲酯相变储能材料的相变温度为3.2℃,相变潜热为188.10 J/g;PNIPAM-40%PEG1000/正癸酸-正癸醇相变储能材料的相变温度为1.2℃,相变潜热为177.74 J/g;PNIPAM-40%PEG1000/月桂酸-十四烷相变储能材料的相变温度为4.2℃,相变潜热为206.17 J/g。
-
关键词:
- 二元有机复配物 /
- 聚N-异丙基丙烯酰胺凝胶 /
- 致孔剂 /
- 相变温度 /
- 相变潜热
Abstract: The organic phase change energy storage materials have high phase change latent heat, stable chemical properties, no supercooling and phase separation. Through thermodynamic analysis of decanoic acid, methyl laurate, 1 decanol, lauric acid and tetradecane, and compounding them in pairs, three binary organic compounds of decanoic acid-methyl laurate (molar ratio 30∶70), decanoic acid-1 decanol (molar ratio 36∶64), and lauric acid-tetradecane (molar ratio 21∶79) were obtained. Their phase transition temperature is all between 0-5℃ and corresponding latent heats of phase transition are higher. A kind of phase change energy storage material suitable for fruit packaging and logistics was acquired through the adsorption performance of poly(N-isopropylacrylamide) (PNIPAM) gel on binary organic compound, moreover the adding of polyethylene glycol 1000 (PEG1000) porogen during the gel preparation process can effectively improve the swelling ratio of the gel in the binary organic compound. The results show that, the phase change temperature of PNIPAM-40%PEG1000/decanoic acid-methyl laurate phase change energy storage material is 3.2℃, and the latent heat of phase change is 188.10 J/g, and the phase change temperature of PNIPAM-40%PEG1000/decanoic, acid-1 decanol phase change energy storage material is 1.2℃, and the latent heat of phase change is 177.74 J/g. The phase change temperature of PNIPAM-40%PEG1000/lauric acid-tetradecane phase change energy storage material is 4.2℃, and the latent heat of phase change is 206.17 J/g. -
表 1 聚N-异丙基丙烯酰胺(PNIPAM)-聚乙二醇(PEG)凝胶的命名
Table 1. Naming of poly(N-isopropylacrylamide) (PNIPAM)-polyethylene glycol (PEG) gel
Sample Mass ratio of PEG∶NIPAM/% Molecular weight of PEG PNIPAM-y%PEGx y x Note: NIPAM—N-isopropylacrylamide. 表 2 有机物的热物性数据
Table 2. Thermophysical data of organic matter
Sample Phase transition
temperature/℃Latent heats of
phase transition/
(J·g−1)Decanoic acid 31.39 153.72 Methyl laurate 4.74 179.25 1 decanol 6.13 200.31 Lauric acid 44.54 181.14 Tetradecane 5.68 215.85 表 3 二元有机复配物最低共熔点
Table 3. The lowest common melting point of binary organic compound
Sample The lowest common
melting point/℃Molar
ratioDecanoic acid-methyl laurate −0.86 29∶71 Decanoic acid-1 decanol −0.74 29∶71 Lauric acid-tetradecane 3.58 13∶87 -
[1] 孙士茼, 汪致洵, 林湘宁, 等. 含热电联供型光热电站与建筑相变储能的离网型综合能源系统[J]. 中国电机工程学报, 2019, 39(20):5926-5937.SUN S T, WANG Z X, LIN X N, et al. Off-grid integrated energy system with combined heat and power CSP plants and phase change storage building[J]. Proceedings of the CSEE,2019,39(20):5926-5937(in Chinese). [2] 翟天尧, 李廷贤, 仵斯, 等. 高导热膨胀石墨/硬脂酸定形相变储能复合材料的制备及储/放热特性[J]. 科学通报, 2018, 63(7):674-683. doi: 10.1360/N972017-00831ZHAI T Y, LI T X, WU S, et al. Preparation and thermal performance of form-stable expanded graphite/stearic acid composite phase change materials with high thermal conductivity[J]. Chinese Science Bulletin,2018,63(7):674-683(in Chinese). doi: 10.1360/N972017-00831 [3] HADIYA J P, SHUKLA A K N. Thermal energy storage using phase change materials: A way forward[J]. International Journal of Global Energy Issues,2018,41:108-127. doi: 10.1504/IJGEI.2018.092311 [4] YANG Y, PANG Y, LIU Y, et al. Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving[J]. Materials Letters,2018,216:220-223. doi: 10.1016/j.matlet.2018.01.025 [5] 纪旭阳, 金兆国, 梁福鑫. 相变材料在建筑节能中的应用[J]. 功能高分子学报, 2019, 32(5):541-549.JI X Y, JIN Z G, LIANG F X. Application of phase change materials in building energy conservation[J]. Journal of Functional Polymers,2019,32(5):541-549(in Chinese). [6] 王曼婷, 高泽华, 兰楚文, 等. 基于相变材料G $ {\rm{e}}_{x} $ S$ {\rm{b}}_{y} $ T$ {\rm{e}}_{z} $ (GST)的微波可调超材料器件研究[J]. 电子元件与材料, 2019, 38(2):64-70.WANG M T, GAO Z H, LAN C W, et al. Microwave tunable metadevices based on phase-change materials G$ {\rm{e}}_{{x}} $ S$ {\rm{b}}_{{y}} $ T$ {\rm{e}}_{{z}} $ (GST)[J]. Electronic Components and Materials,2019,38(2):64-70(in Chinese).[7] WEI F, LI Y, SUI Q, et al. A novel thermal energy storage system in smart building based on phase change material[J]. Smart Grid, IEEE Transactions on,2019,10:2846-2857. doi: 10.1109/TSG.2018.2812160 [8] 李晓燕, 张晓雅, 邱雪君, 等. 相变蓄冷技术在食品冷链运输中的研究进展[J]. 包装工程, 2019, 40(15):150-157.LI X Y, ZHANG X Y, QIU X J, et al. Research progress of phase change cold storage technology in food cold chain transportation[J]. Packaging Engineering,2019,40(15):150-157(in Chinese). [9] 李玉洋, 章学来, 徐笑锋, 等. 正辛酸-肉豆蔻酸低温相变材料的制备和循环性能[J]. 化工进展, 2018, 37(2):689-693.LI Y Y, ZHANG X L, XU X F, et al. Preparation and cyclic properties of low temperature phase change materials of N-caprylic acid and myristic acid[J]. Chemical Industry and Engineering Progress,2018,37(2):689-693(in Chinese). [10] 林酿志, 李传常. 相变储能材料及其冷链运输应用[J]. 储能科学与技术, 2021, 10(3): 1040-1050LIN N Z, LI C C. Phase change materials for energy storage in cold-chain transportation[J]. Energy Storage Science and Technology, 2021, 10(3): 1040-1050(in Chinese). [11] 颉江龙, 魏霞. 相变储能材料在建筑节能中的研究进展与应用[J]. 现代化工, 2019, 39(11):48-52.JI J L, WEI X. Research progress in phase change energy storage materials and application in buildings energy saving[J]. Modern Chemical Industry,2019,39(11):48-52(in Chinese). [12] FASHANDI M, LEUNG S N. Sodium acetate trihydrate-chitin nanowhisker nanocomposites with enhanced phase change performance for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2018,178:259-265. doi: 10.1016/j.solmat.2018.01.037 [13] 何媚质, 杨鲁伟, 张振涛. 无机相变材料CaCl2·6H2O的过冷特性[J]. 化工学报, 2017, 68(11):4016-4024.HE M Z, YANG L W, ZHANG Z T. Supercooling characteris-tics of inorganic phase change material CaCl2·6H2O[J]. Journal of Chemical Industry and Engineering,2017,68(11):4016-4024(in Chinese). [14] 章学来, 徐蔚雯, 刘田田, 等. 月桂酸-癸酸/十四醇-十二烷复合相变储能材料的制备与性能研究[J]. 制冷学报, 2016, 37(1):60-64. doi: 10.3969/j.issn.0253-4339.2016.01.060ZHANG X L, XU W W, LIU T T, et al. Preparation and properties of lauric acid-decanoic/tetradecyl alcohol-dodecane composite as PCMs for thermal energy storage[J]. Journal of Refrigeration,2016,37(1):60-64(in Chinese). doi: 10.3969/j.issn.0253-4339.2016.01.060 [15] WANG Y, LIU Z, NIU X, et al. Preparation, characterization, and thermal properties of microencapsulated phase change material for low-temperature thermal energy storage[J]. Energy and Fuels,2019,33:1631-1636. doi: 10.1021/acs.energyfuels.8b02504 [16] 王朝贺. 有机复合相变蓄能传热材料的制备及性能研究[D]. 南昌: 南昌大学, 2020.WANG C H. Preparation and characterization of organic composite phase change energy storage and heat transfer materials[D]. Nanchang: Nanchang University, 2020(in Chinese). [17] 周孙希, 章学来, 刘升, 等. 癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能[J]. 化工学报, 2019, 70(1):290-297.ZHOU S X, ZHANG X L, LIU S, et al. Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material[J]. Journal of Chemical Industry and Engineering,2019,70(1):290-297(in Chinese). [18] 贾蒲悦, 武卫东, 王益聪, 等. 新型复合低温相蓄冷材料的研制及热物性优化[J]. 化工学报, 2019, 70(7):2758-2765.JIA P Y, WU W D, WANG Y C, et al. Preparation and thermophysical property optimization of a new composite phase change material for cold storage[J]. Journal of Chemical Industry and Engineering,2019,70(7):2758-2765(in Chinese). [19] 左建国, 李维仲, 徐士鸣, 等. 辛酸/月桂酸作为相变蓄冷材料的热性能研究[J]. 太阳能学报, 2012, 33(1):131-134. doi: 10.3969/j.issn.0254-0096.2012.01.022ZUO J G, LI W Z, XU S M, et al. Thermal properties of caprylic acid and lauric acid as phase change cool storage material[J]. Acta Energiae Solaris Sinica,2012,33(1):131-134(in Chinese). doi: 10.3969/j.issn.0254-0096.2012.01.022 [20] 黄雪, 崔英德, 尹国强, 等. 正癸酸-棕榈酸-硬脂酸三元脂肪酸复合相变材料的热性能[J]. 化工新型材料, 2015, 43(1):114-116.HUANG X, CUI Y D, YIN G Q, et al. Thermal property of ternary fatty acid of decanoic acid-palmitic acid-stearic acid composite phase change materials[J]. New Chemical Materials,2015,43(1):114-116(in Chinese). [21] 李云涛, 晏华, 汪宏涛, 等. 正癸酸-月桂酸-硬脂酸三元低共熔体系/膨胀石墨复合相变材料的制备与表征[J]. 材料导报, 2017, 31(2):94-99.LI Y T, YAN H, WANG H T, et al. Preparation and characterization of decanoic acid-lauric acid-stearic acid ternary eutectic mixture/expanded graphene composite phase change material with a low eutectic temperature[J]. Materials Reports,2017,31(2):94-99(in Chinese). [22] TANG Y, ALVA G, HUANG X, et al. Thermal properties and morphologies of MA-SA eutectics/CNTs as composite PCMs in thermal energy storage[J]. Energy and Buildings,2016,127:603-610. doi: 10.1016/j.enbuild.2016.06.031 [23] 方玉堂, 谢鸿洲, 梁向晖, 等. 聚苯乙烯-二氧化硅@十四烷复合纳米相变胶囊的表征及其乳液性能[J]. 化工学报, 2015, 66(2):800-805. doi: 10.11949/j.issn.0438-1157.20141287FANG Y T, XIE H Z, LIANG X H, et al. Characterization of polystyrene-silica@N-tetradecane composite nano-encapsulated phase change material and Its emulsion performance[J]. Journal of Chemical Industry and Engineering,2015,66(2):800-805(in Chinese). doi: 10.11949/j.issn.0438-1157.20141287 [24] 周孙希, 章学来, 刘升, 等. 十四烷-正辛酸有机复合相变材料的制备和性能[J]. 储能科学与技术, 2018, 7(4):692-697. doi: 10.12028/j.issn.2095-4239.2018.0072ZHOU S X, ZHANG X L, LIU S, et al. Preparation and thermal property of a tetradecane-octanoic acid eutectic phase change material[J]. Energy Storage Science and Technology,2018,7(4):692-697(in Chinese). doi: 10.12028/j.issn.2095-4239.2018.0072 [25] 中国国家标准化管理委员会. 傅里叶变换红外光谱仪: GB/T 21186—2007[S]. 北京: 中国标准出版社, 2007.Standardization Administration of the People’s Republic of China. Fourier transform infrared spectrometer: GB/T 21186-2007[S]. Beijing: China Standards Press, 2007(in Chinese). [26] 中国国家标准化管理委员会. 塑料 差示扫描量热法(DSC)第3部分: 熔融和结晶温度及热焓的测定: GB/T 19466.3—2004[S]. 北京: 中国标准出版社, 2004.Standardization Administration of the People’s Republic of China. Plastics differential scanning calorimetry (DSC)-Part 3: Determination of temperature and enthalpy of melting and crystallization: GB/T 19466.3—2004[S]. Beijing: China Standards Press, 2004(in Chinese). [27] 中国国家标准化管理委员会. 浓缩天然胶乳硫化胶乳溶胀度的测定: GB/T 14797.3—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People’s Republic of China. Natural rubber latex concentrate- prevulcanized rubber latex-Determination of swelling capacity: GB/T 14797.3—2008[S]. Beijing: China Standards Press, 2008(in Chinese).