Preparation Artemisia/polyacrylonitrile nanofiber composites and their super-hydrophilic and long-term antibacterial properties
-
摘要: 艾草是一种常见的中草药,其提取物−艾草精油存在挥发快、无法长期保持抑菌性等问题已成为制约其产业化应用的瓶颈。为解决上述问题,本论文利用水溶性艾草粉末,通过静电纺丝方法制备艾草/聚丙烯腈复合纳米纤维,并通过在线工艺与熔喷、热风非织造材料进行复合制备稳定性好、抑菌长久的复合过滤材料。对复合材料的润湿性、抗菌性、透气过滤效率以及单向导湿等性能进行了测试,并与添加艾草精油材料进行了比较。结果表明:艾草粉末的添加使得复合材料具有超亲水性,相比纯聚丙烯腈纳米纤维材料润湿时间缩短126倍;当艾草与聚丙烯腈质量比达到15∶15时,存放2个月后样品的抑菌性测试发现其对金黄色葡萄球菌的抑菌率达到99.5%,而相同条件下艾草精油挥发较快,抗菌性能和持久性较低,可以看出艾草纳米纤维材料具有优异的抗菌和阻隔性能;熔喷材料与艾草/聚丙烯腈纳米纤维材料复合,单向导湿指数可高达988.96%。有望解决纤维材料夏天热集中、冬天湿冷和细菌繁殖等问题,在口罩、敷料和医用防护服等领域上有着广阔应用前景。Abstract: Artemisia is a common Chinese herbal medicine. The essential oil of Artemisia is easy to volatilize and cannot maintain bacteriostasis for a long time, which has become a bottleneck restricting its industrial application. In order to solve the above problems, Artemisia/polyacrylonitrile composite nanofibers were prepared by electrospinning using water-soluble Artemisia powders. The composite filter materials with good stability and long-term bacteriostasis were prepared by on-line process with melt-blown and hot-air nonwovens. The wettability, antibacterial properties, air permeability, filtration efficiency and unidirectional moisture transport of the composites were tested and compared with those of Artemisia essential oil materials. The results show that the addition of Artemisia powder made the composites uper hydrophilic, and the wetting time of the composites is 126 times shorter than that of pure polyacrylonitrile nanofibers. When the mass ratio of Artemisia grass to polyacrylonitrile reaches 15∶15, the bacteriostatic rate of staphylococcus aureus reaches 99.5% after two months. While under the same conditions, Artemisia essential oil volatilized faster, antibacterial property and durability are lower. It can be seen that Artemisia composite nanofiber material has excellent antibacterial and barrier properties. The melt-blown material is compounded with Artemisia/polyacrylonitrile nanofiber material, and the unidirectional moisture conductivity index can be as high as 988.96%. It is expected to solve the problems of hot concentration in summer, damp-cold in winter and bacterial reproduction, and has a broad application prospect in masks, dressings and medical protective clothing.
-
Key words:
- Artemisia /
- nanofibers /
- polyacrylonitrile /
- composite materials /
- antibacterial /
- single-side moisture transport
-
图 6 ((a), (b)) 熔喷材料和纳米纤维材料可弯折性; (c)熔喷材料与不同质量比艾草/PAN 纳米纤维材料的拉伸性能对比;(d) 不同质量比艾草/PAN纳米纤维润湿性能图
Figure 6. ((a), (b)) Bendability of melt-blown materials and Artemisia/PAN nanofiber; (c) Comparison of tensile properties of melt-blown materials and different mass ratio Artemisia/PAN nanofibers; (d) Wettability diagram of different mass ratio Artemisia/PAN nanofibers
图 11 (a)不同厚度熔喷艾草纳米纤维复合材料在不同压强下的透气率;(b) 不同厚度熔喷艾草纳米纤维复合材料对于不同粒径颗粒物的过滤效率
Figure 11. (a) Air permeability of melt-blown Artemisia nanofiber composites with different thickness under different pressures; (b) Filtration efficiency of melt-blown Artemisia nanofiber composites with different thickness for different particle sizes
图 13 (a) 不同厚度热风艾草纳米纤维复合材料在不同压强下的透气率;(b) 不同厚度热风艾草纳米纤维复合材料对于不同粒径颗粒物的过滤效率
Figure 13. (a) Air permeability of Artemisia nanofiber composites with different thickness under different pressures; (b) Filtration efficiency of Artemisia nanofiber composites with different thickness for different particle sizes
表 1 不同中草药纤维材料抗菌数据对比
Table 1. Comparison of Antibacterial data for different Chinese herbal medicine fiber materials
Fiber material Antibacterial rate/% Antibacterial substance Fiber scale Spinning process Mint fiber[30] 96.4 Mint essential oil Micron Wet spinning Artemisia fiber[31] 80.9 Artemisia powder Micron Wet spinning Grass coral fiber[32] 83.6 Sarcandra glabra extract Micron Wet spinning Sophora flavescens fiber[33] 95.5 Sophora flavescens Micron Wet spinning Daqingye fiber[34] 95.6 Folium isatidis extract Micron Wet spinning This work 99.5 Artemisia powder Nanometer Electrospinning 表 2 熔喷材料和艾草纳米纤维复合材料内外润湿数据
Table 2. Internal and external wetting data of melt-blown material and Artemisia nanofiber composites
Surface (interior) Underlying (external) Soaking time/s 60.0 4.212 Water absorption rate/(%·s−1) 0 38.7176 Maximum wetting radius/mm 0 10.0 Liquid water diffusion rate/(mm·s−1) 0 1.2621 One-way transmission capability/% 988.9622 — -
[1] ZHU N, ZHANG D Y, WANG W L, et al. A novel coronavirus from patients with pneumonia in China[J]. New England Journal of Medicine,2020,382(8):727-733. doi: 10.1056/NEJMoa2001017 [2] 陈大明, 赵晓勤, 缪有刚, 等. 全球冠状病毒研究态势分析及其启示[J]. 中国临床医学, 2020(1):1-12. doi: 10.12025/j.issn.1008-6358.2020.20200199CHEN Daming, ZHAO Xiaoqin, MIU Yougang, et al. Analy-sis of the global coeonavirus related research status and its enlightenment for the present and future[J]. Chinese Journal of Clinical Medicine,2020(1):1-12(in Chinese). doi: 10.12025/j.issn.1008-6358.2020.20200199 [3] XIAO H M, SONG Y P, CHEN G J. Correlation between charge decay and solvent effect for melt-blown polypro-pylene electret filter fabrics[J]. Journal of Electrostatics,2014,72(4):311-314. doi: 10.1016/j.elstat.2014.05.006 [4] LEI L, WANG X, MERVIN Z, et al. Can N95 respirators be reused after disinfection? How many times?[J]. ACS Nano,2020,14(5):6348-6356. doi: 10.1021/acsnano.0c03597 [5] ZHONG H, ZHU Z R, LIN J, et al. Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances[J]. ACS Nano,2020,14(5):6213-6221. doi: 10.1021/acsnano.0c02250 [6] XIAO Lishan, ZHANG Han, LIU Cihui, et al. Reusable self-sterilization masks based on electrothermal graphene filters[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56579-56586. [7] 蒋志惠, 常雪梅, 张照然, 等. 艾草的化学成分和药理作用研究进展[J]. 中国兽药杂志, 2019, 53(2):79-88.JIANG Zhihui, CHANG Xuemei, ZHANG Caoran, et al. Advances in the phytochemistry and pharmacology of artemisia argyi[J]. Chinese Journal of Veterinary Drug,2019,53(2):79-88(in Chinese). [8] CAO L, YU D, CUI L, et al. Research progress on chemical composition, pharmacological effects and product development of Artemisia argyi[J]. Drug Evaluation Research, 2018, 41(5): 918-923. [9] SUN Lijuan, FENG Yan, QIAN Xiaoming. Preparation and properties of wormwood extract/viscose spunlaced nonwovens[J]. Journal of the Textile Institute, 2020, 112(5): 709-717. [10] 王辉. 艾草精油微胶囊的制备及对棉织物的抗菌整理[D]. 武汉: 武汉纺织大学, 2013.WANG Hui. Preparation of argy wormwood oil microcapsules and antimicrobial finishing of cotton fabrics[D]. Wuhan: Wuhan Textile University, 2013(in Chinese). [11] 汪小亮, 冯雪为, 潘志娟. 双喷静电纺聚酰胺6/聚酰胺66纳米蛛网纤维膜的制备及其空气过滤性能[J]. 纺织学报, 2015, 36(11):6-11.WANG Xiaoliang, FENG Xuewei, PAI Zhijuan. Preparation of PA6/PA66 nano-net membranes by double-needle electrospinning and its air filtration properties[J]. Journal of Textile Research,2015,36(11):6-11(in Chinese). [12] 费燕娜. 聚乳酸/茶多酚复合纳米纤维膜的制备及性能研究[D]. 无锡: 江南大学, 2013.FEI Yanna. Preparation and property study of PLA/TP composite nanofibrous membranes[D]. Wuxi: Jiangnan University, 2013(in Chinese). [13] 李俊, 伍文静, 孙金玺, 等. 电纺制备聚丙烯腈/聚偏氟乙烯复合纤维膜及其空气过滤性能[J]. 复合材料学报, 2021, 38(3):741-748.LI Jun, WU Wenjing, SUN Jinxi, et al. Preparation of poly-acrylonitrile/polyvinylidene fluoride composite fiber membrane by electrospinning and its air filtration performance[J]. Acta Materiae Compositae Sinica,2021,38(3):741-748(in Chinese). [14] 王利娜, 娄辉清, 辛长征, 等. 空气过滤用电纺聚偏氟乙烯-聚丙烯腈/熔喷聚丙烯无纺布复合材料的制备及过滤性能[J]. 复合材料学报, 2019, 36(2):277-282.WANG Li'na, LOU Huiqing, XIN Changzheng, et al. Prepa-ration and filtration properties of electrospun poly(vinylidenefluoride)-polyacrylonitrile/melt-blow polypropylene nonwoven composite filtration materials[J]. Acta Materiae Compositae Sinica,2019,36(2):277-282(in Chinese). [15] 钱晓明, 魏楚, 钱幺, 等. 空气过滤用微纳米聚丙烯腈/皮芯型聚乙烯-聚丙烯双组分纤维多层复合材料的制备与性能[J]. 复合材料学报, 2020, 37(7):1513-1521.QIAN Xiaoming, WEI Chu, QIAN Yao. Preparation and properties of micronano polyacrylonitrile/sheath-core polyethylene-polypropylene bicomponent fiber multilayer composite filters[J]. Acta Materiae Compositae Sinica,2020,37(7):1513-1521(in Chinese). [16] 曹延娟, 辛斌杰, 张杰, 等. 天然纤维素/聚丙烯腈抗菌纳米纤维的制备与表征[J]. 复合材料学报, 2015, 32(4):1042-1052.CHAO Yanjuan, XIN Binjie, ZHANG Jie, et al. Preparation and characterization of natural cellulose/polyacrylonitrile antibacterial nanofibers[J]. Acta Materiae Compositae Sinica,2015,32(4):1042-1052(in Chinese). [17] 顾晓华, 李燕, 刘思雯, 等. 茶多酚-聚乳酸/聚碳酸丁二醇酯抗菌复合纤维膜的制备及性能[J]. 复合材料学报, 2020, 37(6):1227-1233.GU Xiaohua, LI Yan, LIU Siwen, et al. Preparation and properties of tea polyphenol-polylacticacid/polybutylene carbonate antibacterial composite fiber membrane[J]. Acta Materiae Compositae Sinica,2020,37(6):1227-1233(in Chinese). [18] 中国国家标准化管理委员会. 纺织品 织物拉伸性能 第1部分—断裂强力和断裂伸长率的测定(条样法): GB/T 3923.1—2013[S]. 北京: 中国标准出版社, 2013.Standardization Administration of the People’s Republic of China. Textile-Fabrics tensile properties-Part 1—Deter-mination of maximum force and elongation at maximum force using the strip method: GB/T 3923.1—2013[S]. Beijing: China Standards Press, 2013(in Chinese). [19] 中国国家标准化管理委员会. 纺织品 抗菌性能的评价 第1部分—琼脂扩散法: GB/T 20944.1—2007[S]. 北京: 中国标准出版社, 2007.Standardization Administration of the People’s Republic of China. Textiles-Evaluation for antibacterial activity-Part 1—Agar diffusion plate method: GB/T 20944.1—2007[S]. Beijing: China Standards Press, 2007(in Chinese). [20] 中国国家标准化管理委员会. 纺织品 抗菌性能的评价 第3部分—振荡法: GB/T 20944.3—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People’s Republic of China. Textiles-Evaluation for antibacterial activity-Part 3—Shake flask method: GB/T 20944.3—2008[S]. Beijing: China Standards Press, 2008(in Chinese). [21] 中国国家标准化管理委员会. 纺织品 织物透气性的测定方法: GB/T 5453—1997[S]. 北京: 中国标准出版社, 1997.Standardization Administration of the People’s Republic of China. Textiles-Determination of the permeability of fabrics to air: GB/T 5453—1997[S]. Beijing: China Standards Press, 1997(in Chinese). [22] 中国国家标准化管理委员会. 纺织品 吸湿速干性的评定 第2部分—动态水分传递法: GB/T 21655.2—2019[S]. 北京: 中国标准出版社, 2019.Standardization Administration of the People’s Republic of China. Textiles-Evaluation of absorption and quick-drying-Part 2—Method for moisture management tests: GB/T 21655.2—2019[S]. Beijing: China Standards Press, 2019(in Chinese). [23] 王书平, 吴涛, 陆玉建. 几种芳香植物精油的抑菌活性研究[J]. 安徽农学通报, 2018, 24(2):20-24. doi: 10.3969/j.issn.1007-7731.2018.02.007WANG Shuping, WU Tao, LU Yujian. Study on anti-microbial activity kinds of aromatic essential oil[J]. Anhui Agricultural Science Bulletin,2018,24(2):20-24(in Chinese). doi: 10.3969/j.issn.1007-7731.2018.02.007 [24] 刘艳秋, 段伟丽, 包怡红. 艾蒿精油最佳提取工艺条件优化[J]. 中国林副特产, 2014(6):12-14. doi: 10.3969/j.issn.1001-6902.2014.06.004LIU Yanqiu, DUAN Weili, BAO Yihong. Process optimization for extracting essential oil from Artemisia argyi[J]. Forest By-product and Speciality in China,2014(6):12-14(in Chinese). doi: 10.3969/j.issn.1001-6902.2014.06.004 [25] 宋川. 艾叶生药及化学成分的研究[D]. 云南: 云南中医学院, 2013.SONG Chuan. Chemical constituents from the leaves of Artemisia argyi[D]. Yunnan: Yunnan University of Chinese Medicine, 2013(in Chinese). [26] 雷琼. 不同产地艾叶主要成分比较研究[D]. 陕西: 西北农林科技大学, 2020.LEI Qiong. Comparative study on main components of Artemisia argyi from different origins[D]. Shanxi: North-west A&F University, 2020(in Chinese). [27] 谭春园, 解保生, 丁仲鹃. 不同分子量壳聚糖膜的制备研究[J]. 昆明医学院学报, 2011, 32(8):9-12.TAN Chunyuan, JIE Baosheng, DING Zhongjuan. The preparation of chitosans membrans with differernt molecular wright[J]. Journal of Kunming Medical University,2011,32(8):9-12(in Chinese). [28] 吕娉娉. 艾蒿超细粉体/纤维素共混膜的制备[D]. 青岛: 青岛大学, 2013.LV Pingping. Preparation of cellulose films blended with superfine artemisia argyi powder[D]. Qingdao: Qingdao University, 2013(in Chinese). [29] 段晓杰, 杜晓丹, 张蓓蓓. 纳米银对金黄色葡萄球菌的抗菌作用及其机制研究[J]. 生物医学工程与临床, 2015, 19(3):237-240. doi: 10.3969/j.issn.1009-7090.2015.03.008DUAN Xiaojie, DU Xiaodan, ZHANG Beibei. Antibacterial effect of silver nanoparticles on staphylococcus aureus and underlying mechanism[J]. Biomedical Engineering and Clinical Medicine,2015,19(3):237-240(in Chinese). doi: 10.3969/j.issn.1009-7090.2015.03.008 [30] 杜梅, 赵磊, 王前文, 等. 薄荷粘胶纤维混纺纱的抗菌性能测试与研究[J]. 轻纺工业与技术, 2015, 44(2):9-11. doi: 10.3969/j.issn.2095-0101.2015.02.004DU Mei, ZHAO Lei, WANG Qianwen, et al. Study on antibacterial property of mint viscose rayon blended yarn[J]. Light and Textile Industry and Technology,2015,44(2):9-11(in Chinese). doi: 10.3969/j.issn.2095-0101.2015.02.004 [31] 崔凤烨, 钱晓明, 王立晶, 等. 热风艾草纤维面膜基布的制备及性能研究[J]. 上海纺织科技, 2020, 48(6):27-29.CUI Fengye, QIAN Xiaoming, WANG Lijing. et al. Preparation and properties of hot wind wormwood fiber mask base fabric[J]. Shanghai Textile Science & Technology,2020,48(6):27-29(in Chinese). [32] 马君志, 李昌垒. 中药保健再生纤维素纤维的开发及应用[J]. 针织工业, 2016(8):4-6. doi: 10.3969/j.issn.1000-4033.2016.08.002MA Junzhi, LI Changlei. Development and application of Chinese herb health regenerated cellulose fiber[J]. Knitting Industries,2016(8):4-6(in Chinese). doi: 10.3969/j.issn.1000-4033.2016.08.002 [33] 吴炳烨, 于湖生, 衣光欣. 抗菌护肤黏胶纤维的制备及性能研究[J]. 针织工业, 2019(2):25-28. doi: 10.3969/j.issn.1000-4033.2019.02.007WU Bingye, YU Husheng, YI Guangxin. Preparation and properties study of antibacterial skin care viscose fiber[J]. Knitting Industries,2019(2):25-28(in Chinese). doi: 10.3969/j.issn.1000-4033.2019.02.007 [34] 李秀花, 于湖生, 周蓉. 植物中药功能黏胶纤维用于日防型口罩的研究[J]. 针织工业, 2020(3):6-8. doi: 10.3969/j.issn.1000-4033.2020.03.002LI Xiuhua, YU Husheng, ZHOU Rong. Application study of traditional Chinese plant medicine functional viscose fiber in daily protective masks[J]. Knitting Industries,2020(3):6-8(in Chinese). doi: 10.3969/j.issn.1000-4033.2020.03.002