Preparation and properties of a glass fiber/spunbond composite filter with high peel strength and permeability
-
摘要: 玻纤滤材具有过滤精度高和纳污量大等优点,但其耐折和耐压性能较差,需要与非织造布复合以提高其加工性和使用寿命,但传统的上胶复合工艺容易造成玻纤复合滤材透气性下降。将热熔胶树脂颗粒通过熔喷技术以超细纤维形式均匀负载到纺粘布上,进一步利用热轧复合技术与玻纤滤材复合,得到了剥离强力高、透气性基本不变的玻纤/纺粘复合滤材。通过对比复合玻纤滤材的剥离强度和透气性变化,发现超细纤维负载量对复合滤材的性能影响最大,当负载量为8 g/m2时,复合滤材剥离强度即可达到要求,对透气性也不会造成明显影响。综合考虑产品性能与生产实际,建立了最佳复合工艺为上胶量8 g/m2、辊间距0.3 mm、热轧温度120℃、热轧速度15 m/min,在此工艺下玻纤滤材和纺粘布间达到了较好的粘合效果,且复合滤材透气性变化较小。Abstract: Glass fiber materials, a kind of filter medium, have advantages of high filtration accuracy and large holding capacity of pollution. It is usually composited with nonwoven materials to improve its processability and service life by overcoming the poor folding ability and pressure resistance. However, the air permeability of this kind of composites will be decreased caused by the hot melt adhesive coating method. In this paper, this issue is addressed by creating a melt-blown fibrous bonding layer of hot melt resin rather than just coating a compact film between glass fiber medium and spunbond nonwoven materials. By this approach, the loading amount of melt-blown fibrous layer plays a significant role in the filtration performance of this filter medium. The results show that a high peel strength can be achieved but without compromising the permeability when loading 8 g/m2 melt-blown fibers. And, considering the properties of the product and the production, a filter medium product with good mechanical properties and filtration performance can be fabricated when setting the loading amount of melt-blown fibers, gauge, temperature, and speed of hot calender at 8 g/m2, 0.3 mm, 120℃ and 15 m/min, respectively.
-
Key words:
- melt-blown /
- glass fiber filter /
- hot melt adhesive /
- composite /
- air permeability
-
表 1 热熔胶剥离强力
Table 1. Peel strength of hot melt adhesives
Glue number A B C Peel strength/N 37.62 36.49 11.96 Notes: A, B—Different kinds of polyester hot melt adhesive; C—Polyamide hot melt adhesive. 表 2 玻纤/纺粘复合滤材透气性能测试
Table 2. Air permeability test of fiber/ spunbond composite filter
Microfiber loading/
(g·m−2)Peel strength/
(N·cm−2)Permeability/
(mm·s−1)5 3.3 168.5 8 Breakage 165.9 12 Breakage 154.0 Note: Air permeability of the original glass fiber filter material is 185.2 mm/s. 表 3 温度对玻纤/纺粘无纺布复合滤材透气率的影响
Table 3. Permeability of fiber/spunbond composite filter calendered at different temperatures
Calendering temperature/℃ 120 150 Permeability/(mm·s−1) 165.9 164.9 Note: Air permeability of the original glass fiber filter material is 185.2 mm/s. 表 4 热轧速度对玻纤/纺粘无纺布复合滤材透气率的影响
Table 4. Permeability of fiber/spunbond composite filter calendered at different speed
Calendering speed/(m·min−1) 5 10 15 Permeability/(mm·s−1) 171.0 165.9 168.0 -
[1] 丛新兴. 经济高质量发展战略下我国成品油消费的变化[J]. 中国石油和化工经济分析, 2019(9):46-48.CONG Xinxing. Changes of China's refined oil consumption under the strategy of high-quality economic development[J]. Economic Analysis of China Petroleum and Chemical Industry,2019(9):46-48(in Chinese). [2] XIAOHUI C, ZHIYONG W, SHOUQUAN P, et al. Improvement of engine performance and emissions by biomass oil filter in diesel engine[J]. Fuel,2019,235(1):603-609. [3] LIJIANG W, RUPENG C, HONGJUN M, et al. Combustion process and NOx emissions of a marine auxiliary diesel engine fuelled with waste cooking oil biodiesel blends[J]. Energy,2018,144(1):73-80. [4] SANGKI P, JUNGMO O, KIHYUNG L. Investigation on spray behavior and NOx conversion characteristic of a secondary injector for a lean NOx trap catalyst[J]. International Journal of Automotive Technology,2018,19(2):199-207. doi: 10.1007/s12239-018-0019-y [5] 孙梦楠, 王佳, 陈怀松, 等. 提高内燃机车燃油滤器过滤性能的试验研究[J]. 内燃机, 2019(5):24-27.SUN Mengnan, WANG Jia, CHEN Huaisong, et al. Study on improving the filtration performance of fuel filter for diesel locomotives[J]. Internal Combustion Engines,2019(5):24-27(in Chinese). [6] 邵超凡, 卢继霞, 白亚洲, 等. 一种新型复合油液过滤材料的研制[J]. 液压与气动, 2020(10):39-43. doi: 10.11832/j.issn.1000-4858.2020.10.007SHAO Chaofan, LU Jixia, BAI Yazhou, et al. Preparation and research of a new composite oil filtration material[J]. Chinese Hydraulics & Pneumatics,2020(10):39-43(in Chinese). doi: 10.11832/j.issn.1000-4858.2020.10.007 [7] 周子敬, 狄俊平, 孙梦楠, 等. 无纺布对滤芯过滤精度稳定性的影响[J]. 过滤与分离, 2016, 26(2):37-39. doi: 10.3969/j.issn.1005-8265.2016.02.008ZHOU Zijing, DI Junping, SUN Mengnan, et al. Influence of non-woven fabric on filtering accuracy stability of filter element[J]. Journal of Filtration & Separation,2016,26(2):37-39(in Chinese). doi: 10.3969/j.issn.1005-8265.2016.02.008 [8] 柯勤飞, 靳向煜. 非织造学[M]. 第3版. 上海: 东华大学出版社, 2016: 295-296.KE Qinfei, JIN Xiangyu. Nonwovens[M]. 3rd ed. Shanghai: University Press, 2016: 295-296(in Chinese). [9] 王洪, 靳向煜, 吴海波. 非织造材料及其应用[M]. 北京: 中国纺织出版社, 2020: 25-28.WANG Hong, JIN Xiangyu, WU Haibo. Nonwovens and their applications[M]. Beijing: China Textile & Apparel Press, 2020: 25-28(in Chinese). [10] 刘振. 无纺布复合燃油滤材的制备及性能研究[D]. 广州: 华南理工大学, 2013.LIU Zhen. Preparation of non-woven composite fuel filter media and study on filtration performance[D]. Guangzhou: South China University of Technology, 2013(in Chinese). [11] 李燕霞. 有机无机复合过滤材料的设计、制备及性能研究[D]. 天津: 河北工业大学, 2015.LI Yanxia. Design, preparation and performance of organic-inorganic composite filter materials[M]. Tianjin: Hebei University of Technology, 2015(in Chinese). [12] 石玉强, 杨超, 瞿晓吉, 等. 复合滤材组合方式对其过滤特性的影响研究[J]. 玻璃纤维, 2020(5):21-24. doi: 10.3969/j.issn.1005-6262.2020.05.005SI Yuqiang, YANG Chao, ZHAI Xiaoji, et al. Study on the influences of composite filter material combination on its filtration characteristics[J]. Fiber Glass,2020(5):21-24(in Chinese). doi: 10.3969/j.issn.1005-6262.2020.05.005 [13] 李惠, 伍茜, 潘志娟. 高精度燃油过滤材料的结构与性能分析[J]. 现代纺织技术, 2018, 26(6):6-11.LI Hui, WU Qian, PAN Zhijuan. Analysis on structure and properties of high-precision fuel filter materials[J]. Advanced Textile Technology,2018,26(6):6-11(in Chinese). [14] 周向群, 沈伟, 林雪梅, 等. 热熔黏合聚酯的合成技术以及应用[J]. 合成纤维工业, 2019, 42(1):59-63. doi: 10.3969/j.issn.1001-0041.2019.01.013ZHOU Xiangqun, SHEN Wei, LIN Xuemei, et al. Synthesis technology and application of hot melt bonding polyester[J]. China Synthetic Fiber Industry,2019,42(1):59-63(in Chinese). doi: 10.3969/j.issn.1001-0041.2019.01.013 [15] 马安博. 热熔胶技术的发展及应用[J]. 化学与黏合, 2018, 40(3):211-215.MA Anbo. Development and application of hot-melt adhesive technology[J]. Chemistry and Adhesion,2018,40(3):211-215(in Chinese). [16] 李娟, 蔡益波, 刘枫. 热塑性热熔胶的研究进展[J]. 中国胶粘剂, 2019, 28(12):56-60.LI Juan, CAI Yibo, LIU Feng. Research progress of thermoplastic hot melt adhesive[J]. China Adhesives,2019,28(12):56-60(in Chinese). [17] 李娟, 蔡益波, 王恒. 反应型聚氨酯热熔胶研究进展[J]. 中国胶粘剂, 2019, 28(10):50-54.LI Juan, CAI Yibo, WANG Heng. Research progress of reac-tive polyurethane hot melt adhesive[J]. China Adhesives,2019,28(10):50-54(in Chinese). [18] 王鸣义. 热熔黏聚酯合成技术的发展及应用[J]. 纺织导报, 2019(4):48-54. doi: 10.3969/j.issn.1003-3025.2019.04.011WANG Mingyi. Synthesis technology and application of hot melt adhesive polyester[J]. China Textile Leader,2019(4):48-54(in Chinese). doi: 10.3969/j.issn.1003-3025.2019.04.011 [19] 宣中旺, 孙良友. 热熔胶网膜生产用喷丝板: 中国, 201821481436.7[P]. 2019-08-09.XUAN Zhongwang, SUN Liangyou. Spinneret for production of hot melt adhesive screen film: China, 201821481436.7[P]. 2019-08-09(in Chinese). [20] 杨洋. 双撞针式压电驱动热熔胶喷射阀的机理及实验研究[D]. 长春: 吉林大学, 2020.YANG Yang. Mechanism and experimental study on double-needle type piezo-driven injecting valve of hot melt adhesive[D]. Changchun: Jilin University, 2020(in Chinese). [21] 中国国家标准化管理委员会. 热塑性塑料熔体质量流动速率(MFR)和熔体体积流动速率(MVR)的测定: GB/T 3682.1—2018[S]. 北京: 中国标准出版社, 2018.Standardization Administration of the People’s Republic of China. Plastics-determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics: GB/T 3682.1—2018[S]. Beijing: China Standards Press, 2018(in Chinese). [22] 中国国家标准化管理委员会. 胶粘剂T剥离强度试验方法(挠性材料): GB/T 2791—1995[S]. 北京: 中国标准出版社, 1995.Standardization Administration of China. T peel strength test method for a flexible-to-flexible test specimen assembly: GB/T 2791—1995[S]. Beijing: China Standards Press, 1995(in Chinese). [23] 中国国家标准化管理委员会. 纸和纸板层间剥离强度的测定: GB/T34444—2017[S]. 北京: 中国标准出版社, 2017.Standardization Administration of the People’s Republic of China. Paper and board-determination of the layer peel strength: GB/T34444—2017[S]. Beijing: China Standards Press, 2017(in Chinese). [24] 中国国家标准化管理委员会. 纺织品 织物透气性的测定: GB/T5453—1997[S]. 北京: 中国标准出版社, 1997.Standardization Administration of the People’s Republic of China. Textiles-Determination of the permeability of fabrics to air: GB/T5453—1997[S]. Beijing: China Standards Press, 1997(in Chinese).