留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种高剥离强度和透气性的玻纤/纺粘无纺布复合滤材的制备工艺与性能

熊晨 张久政 王洪

熊晨, 张久政, 王洪. 一种高剥离强度和透气性的玻纤/纺粘无纺布复合滤材的制备工艺与性能[J]. 复合材料学报, 2022, 39(5): 2398-2404. doi: 10.13801/j.cnki.fhclxb.20210615.002
引用本文: 熊晨, 张久政, 王洪. 一种高剥离强度和透气性的玻纤/纺粘无纺布复合滤材的制备工艺与性能[J]. 复合材料学报, 2022, 39(5): 2398-2404. doi: 10.13801/j.cnki.fhclxb.20210615.002
XIONG Chen, ZHANG Jiuzheng, WANG Hong. Preparation and properties of a glass fiber/spunbond composite filter with high peel strength and permeability[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2398-2404. doi: 10.13801/j.cnki.fhclxb.20210615.002
Citation: XIONG Chen, ZHANG Jiuzheng, WANG Hong. Preparation and properties of a glass fiber/spunbond composite filter with high peel strength and permeability[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2398-2404. doi: 10.13801/j.cnki.fhclxb.20210615.002

一种高剥离强度和透气性的玻纤/纺粘无纺布复合滤材的制备工艺与性能

doi: 10.13801/j.cnki.fhclxb.20210615.002
详细信息
    通讯作者:

    王洪,博士,教授,硕士生导师,研究方向为多孔功能材料、生物质材料和再生资源材料 E-mail:wanghong@dhu.edu.cn

  • 中图分类号: TS176

Preparation and properties of a glass fiber/spunbond composite filter with high peel strength and permeability

  • 摘要: 玻纤滤材具有过滤精度高和纳污量大等优点,但其耐折和耐压性能较差,需要与非织造布复合以提高其加工性和使用寿命,但传统的上胶复合工艺容易造成玻纤复合滤材透气性下降。将热熔胶树脂颗粒通过熔喷技术以超细纤维形式均匀负载到纺粘布上,进一步利用热轧复合技术与玻纤滤材复合,得到了剥离强力高、透气性基本不变的玻纤/纺粘复合滤材。通过对比复合玻纤滤材的剥离强度和透气性变化,发现超细纤维负载量对复合滤材的性能影响最大,当负载量为8 g/m2时,复合滤材剥离强度即可达到要求,对透气性也不会造成明显影响。综合考虑产品性能与生产实际,建立了最佳复合工艺为上胶量8 g/m2、辊间距0.3 mm、热轧温度120℃、热轧速度15 m/min,在此工艺下玻纤滤材和纺粘布间达到了较好的粘合效果,且复合滤材透气性变化较小。

     

  • 图  1  玻纤/纺粘无纺布复合滤材试样制备工艺路线图

    Figure  1.  Diagram of glass fiber/spunbond filter compounding process

    图  2  A热熔胶和B热熔胶的差示扫描量热 (DSC) 曲线图对比

    Figure  2.  Comparison of differential scanning calorimeter (DSC) curve for hot melt adhesive A and B

    图  3  B热熔胶的热降解性能

    Figure  3.  Thermal degradation properties of B hot melt adhesive

    图  4  不同温度下B热熔胶的温度-熔体流动速率(MFR)变化

    Figure  4.  Melting mass flow rate (MFR) change of hot melt adhesive B under different temperature

    图  5  热熔胶纤维形态结构

    Figure  5.  Fiber morphology and structure of hot melt adhesive

    图  6  剥离试验中玻纤/纺粘无纺布复合滤材破损照片

    Figure  6.  Photo of damaged glass fiber/spunbond composite filter damage during peeling test

    图  7  热轧温度100℃下的玻纤/纺粘无纺布复合滤材

    Figure  7.  Glass fiber/spunbond composite filter calendered at 100℃

    图  8  热轧速度为15 m/min时的玻纤/纺粘无纺布复合滤材截面SEM图像

    Figure  8.  Cross section SEM images of fiber/spunbond composite filter calendered at the speed of 15 m/min

    表  1  热熔胶剥离强力

    Table  1.   Peel strength of hot melt adhesives

    Glue numberABC
    Peel strength/N37.6236.4911.96
    Notes: A, B—Different kinds of polyester hot melt adhesive; C—Polyamide hot melt adhesive.
    下载: 导出CSV

    表  2  玻纤/纺粘复合滤材透气性能测试

    Table  2.   Air permeability test of fiber/ spunbond composite filter

    Microfiber loading/
    (g·m−2)
    Peel strength/
    (N·cm−2)
    Permeability/
    (mm·s−1)
    53.3168.5
    8Breakage165.9
    12Breakage154.0
    Note: Air permeability of the original glass fiber filter material is 185.2 mm/s.
    下载: 导出CSV

    表  3  温度对玻纤/纺粘无纺布复合滤材透气率的影响

    Table  3.   Permeability of fiber/spunbond composite filter calendered at different temperatures

    Calendering temperature/℃120150
    Permeability/(mm·s−1)165.9164.9
    Note: Air permeability of the original glass fiber filter material is 185.2 mm/s.
    下载: 导出CSV

    表  4  热轧速度对玻纤/纺粘无纺布复合滤材透气率的影响

    Table  4.   Permeability of fiber/spunbond composite filter calendered at different speed

    Calendering speed/(m·min−1)51015
    Permeability/(mm·s−1)171.0165.9168.0
    下载: 导出CSV
  • [1] 丛新兴. 经济高质量发展战略下我国成品油消费的变化[J]. 中国石油和化工经济分析, 2019(9):46-48.

    CONG Xinxing. Changes of China's refined oil consumption under the strategy of high-quality economic development[J]. Economic Analysis of China Petroleum and Chemical Industry,2019(9):46-48(in Chinese).
    [2] XIAOHUI C, ZHIYONG W, SHOUQUAN P, et al. Improvement of engine performance and emissions by biomass oil filter in diesel engine[J]. Fuel,2019,235(1):603-609.
    [3] LIJIANG W, RUPENG C, HONGJUN M, et al. Combustion process and NOx emissions of a marine auxiliary diesel engine fuelled with waste cooking oil biodiesel blends[J]. Energy,2018,144(1):73-80.
    [4] SANGKI P, JUNGMO O, KIHYUNG L. Investigation on spray behavior and NOx conversion characteristic of a secondary injector for a lean NOx trap catalyst[J]. International Journal of Automotive Technology,2018,19(2):199-207. doi: 10.1007/s12239-018-0019-y
    [5] 孙梦楠, 王佳, 陈怀松, 等. 提高内燃机车燃油滤器过滤性能的试验研究[J]. 内燃机, 2019(5):24-27.

    SUN Mengnan, WANG Jia, CHEN Huaisong, et al. Study on improving the filtration performance of fuel filter for diesel locomotives[J]. Internal Combustion Engines,2019(5):24-27(in Chinese).
    [6] 邵超凡, 卢继霞, 白亚洲, 等. 一种新型复合油液过滤材料的研制[J]. 液压与气动, 2020(10):39-43. doi: 10.11832/j.issn.1000-4858.2020.10.007

    SHAO Chaofan, LU Jixia, BAI Yazhou, et al. Preparation and research of a new composite oil filtration material[J]. Chinese Hydraulics & Pneumatics,2020(10):39-43(in Chinese). doi: 10.11832/j.issn.1000-4858.2020.10.007
    [7] 周子敬, 狄俊平, 孙梦楠, 等. 无纺布对滤芯过滤精度稳定性的影响[J]. 过滤与分离, 2016, 26(2):37-39. doi: 10.3969/j.issn.1005-8265.2016.02.008

    ZHOU Zijing, DI Junping, SUN Mengnan, et al. Influence of non-woven fabric on filtering accuracy stability of filter element[J]. Journal of Filtration &Separation,2016,26(2):37-39(in Chinese). doi: 10.3969/j.issn.1005-8265.2016.02.008
    [8] 柯勤飞, 靳向煜. 非织造学[M]. 第3版. 上海: 东华大学出版社, 2016: 295-296.

    KE Qinfei, JIN Xiangyu. Nonwovens[M]. 3rd ed. Shanghai: University Press, 2016: 295-296(in Chinese).
    [9] 王洪, 靳向煜, 吴海波. 非织造材料及其应用[M]. 北京: 中国纺织出版社, 2020: 25-28.

    WANG Hong, JIN Xiangyu, WU Haibo. Nonwovens and their applications[M]. Beijing: China Textile & Apparel Press, 2020: 25-28(in Chinese).
    [10] 刘振. 无纺布复合燃油滤材的制备及性能研究[D]. 广州: 华南理工大学, 2013.

    LIU Zhen. Preparation of non-woven composite fuel filter media and study on filtration performance[D]. Guangzhou: South China University of Technology, 2013(in Chinese).
    [11] 李燕霞. 有机无机复合过滤材料的设计、制备及性能研究[D]. 天津: 河北工业大学, 2015.

    LI Yanxia. Design, preparation and performance of organic-inorganic composite filter materials[M]. Tianjin: Hebei University of Technology, 2015(in Chinese).
    [12] 石玉强, 杨超, 瞿晓吉, 等. 复合滤材组合方式对其过滤特性的影响研究[J]. 玻璃纤维, 2020(5):21-24. doi: 10.3969/j.issn.1005-6262.2020.05.005

    SI Yuqiang, YANG Chao, ZHAI Xiaoji, et al. Study on the influences of composite filter material combination on its filtration characteristics[J]. Fiber Glass,2020(5):21-24(in Chinese). doi: 10.3969/j.issn.1005-6262.2020.05.005
    [13] 李惠, 伍茜, 潘志娟. 高精度燃油过滤材料的结构与性能分析[J]. 现代纺织技术, 2018, 26(6):6-11.

    LI Hui, WU Qian, PAN Zhijuan. Analysis on structure and properties of high-precision fuel filter materials[J]. Advanced Textile Technology,2018,26(6):6-11(in Chinese).
    [14] 周向群, 沈伟, 林雪梅, 等. 热熔黏合聚酯的合成技术以及应用[J]. 合成纤维工业, 2019, 42(1):59-63. doi: 10.3969/j.issn.1001-0041.2019.01.013

    ZHOU Xiangqun, SHEN Wei, LIN Xuemei, et al. Synthesis technology and application of hot melt bonding polyester[J]. China Synthetic Fiber Industry,2019,42(1):59-63(in Chinese). doi: 10.3969/j.issn.1001-0041.2019.01.013
    [15] 马安博. 热熔胶技术的发展及应用[J]. 化学与黏合, 2018, 40(3):211-215.

    MA Anbo. Development and application of hot-melt adhesive technology[J]. Chemistry and Adhesion,2018,40(3):211-215(in Chinese).
    [16] 李娟, 蔡益波, 刘枫. 热塑性热熔胶的研究进展[J]. 中国胶粘剂, 2019, 28(12):56-60.

    LI Juan, CAI Yibo, LIU Feng. Research progress of thermoplastic hot melt adhesive[J]. China Adhesives,2019,28(12):56-60(in Chinese).
    [17] 李娟, 蔡益波, 王恒. 反应型聚氨酯热熔胶研究进展[J]. 中国胶粘剂, 2019, 28(10):50-54.

    LI Juan, CAI Yibo, WANG Heng. Research progress of reac-tive polyurethane hot melt adhesive[J]. China Adhesives,2019,28(10):50-54(in Chinese).
    [18] 王鸣义. 热熔黏聚酯合成技术的发展及应用[J]. 纺织导报, 2019(4):48-54. doi: 10.3969/j.issn.1003-3025.2019.04.011

    WANG Mingyi. Synthesis technology and application of hot melt adhesive polyester[J]. China Textile Leader,2019(4):48-54(in Chinese). doi: 10.3969/j.issn.1003-3025.2019.04.011
    [19] 宣中旺, 孙良友. 热熔胶网膜生产用喷丝板: 中国, 201821481436.7[P]. 2019-08-09.

    XUAN Zhongwang, SUN Liangyou. Spinneret for production of hot melt adhesive screen film: China, 201821481436.7[P]. 2019-08-09(in Chinese).
    [20] 杨洋. 双撞针式压电驱动热熔胶喷射阀的机理及实验研究[D]. 长春: 吉林大学, 2020.

    YANG Yang. Mechanism and experimental study on double-needle type piezo-driven injecting valve of hot melt adhesive[D]. Changchun: Jilin University, 2020(in Chinese).
    [21] 中国国家标准化管理委员会. 热塑性塑料熔体质量流动速率(MFR)和熔体体积流动速率(MVR)的测定: GB/T 3682.1—2018[S]. 北京: 中国标准出版社, 2018.

    Standardization Administration of the People’s Republic of China. Plastics-determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics: GB/T 3682.1—2018[S]. Beijing: China Standards Press, 2018(in Chinese).
    [22] 中国国家标准化管理委员会. 胶粘剂T剥离强度试验方法(挠性材料): GB/T 2791—1995[S]. 北京: 中国标准出版社, 1995.

    Standardization Administration of China. T peel strength test method for a flexible-to-flexible test specimen assembly: GB/T 2791—1995[S]. Beijing: China Standards Press, 1995(in Chinese).
    [23] 中国国家标准化管理委员会. 纸和纸板层间剥离强度的测定: GB/T34444—2017[S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of the People’s Republic of China. Paper and board-determination of the layer peel strength: GB/T34444—2017[S]. Beijing: China Standards Press, 2017(in Chinese).
    [24] 中国国家标准化管理委员会. 纺织品 织物透气性的测定: GB/T5453—1997[S]. 北京: 中国标准出版社, 1997.

    Standardization Administration of the People’s Republic of China. Textiles-Determination of the permeability of fabrics to air: GB/T5453—1997[S]. Beijing: China Standards Press, 1997(in Chinese).
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  1032
  • HTML全文浏览量:  502
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 修回日期:  2021-05-25
  • 录用日期:  2021-06-05
  • 网络出版日期:  2021-06-15
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回