留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FeVO4/Cu3(BTC)2(H2O)3异质结制备及光催化性能

刘颖琪 翁文斌 岑檠 肖维 王齐 丛燕青 张轶

刘颖琪, 翁文斌, 岑檠, 等. FeVO4/Cu3(BTC)2(H2O)3异质结制备及光催化性能[J]. 复合材料学报, 2020, 37(12): 3128-3136. doi: 10.13801/j.cnki.fhclxb.20200917.001
引用本文: 刘颖琪, 翁文斌, 岑檠, 等. FeVO4/Cu3(BTC)2(H2O)3异质结制备及光催化性能[J]. 复合材料学报, 2020, 37(12): 3128-3136. doi: 10.13801/j.cnki.fhclxb.20200917.001
LIU Yingqi, WENG Wenbin, CEN Qin, et al. Preparation and photocatalytic properties of FeVO4/Cu3(BTC)2(H2O)3 heterojunction[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3128-3136. doi: 10.13801/j.cnki.fhclxb.20200917.001
Citation: LIU Yingqi, WENG Wenbin, CEN Qin, et al. Preparation and photocatalytic properties of FeVO4/Cu3(BTC)2(H2O)3 heterojunction[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3128-3136. doi: 10.13801/j.cnki.fhclxb.20200917.001

FeVO4/Cu3(BTC)2(H2O)3异质结制备及光催化性能

doi: 10.13801/j.cnki.fhclxb.20200917.001
基金项目: 国家自然科学基金(21876154);浙江省自然科学基金(LR18B070001)
详细信息
    通讯作者:

    王齐,博士,教授,研究方向为光催化 E-mail:wangqi8327@zjgsu.edu.cn

  • 中图分类号: O643

Preparation and photocatalytic properties of FeVO4/Cu3(BTC)2(H2O)3 heterojunction

  • 摘要: 以Cu片和1, 3, 5-苯三甲酸为原料,电化学法制备经典Cu-MOF材料Cu3(BTC)2(H2O)3,即HKUST-1,作为基底金属有机框架材料(MOFs),采用室温沉积法制备FeVO4/HKUST-1异质结复合材料,通过XRD、SEM、BET、UV-Vis DRS等对其晶体结构、形貌、比表面积、光吸收性能等进行了表征。结果表明:FeVO4与HKUST-1复合形成异质结后,有利于光生电子-空穴的产生和转移,对目标染料污染物罗丹明B(RhB)的降解性能显著增强。可见光照射120 min后,异质结体系中RhB的降解率可达93%,而单一FeVO4或HKUST-1体系中仅为12%和5%。此外,对材料的组成比例进行了优化,当FeVO4与HKUST-1摩尔比为1∶1时,制备的FeVO4/HKUST-1复合材料具有最佳的光催化性能。进一步,考察了其循环使用的稳定性,循环5次后对RhB的降解效率仍保持在90%以上,稳定性良好。

     

  • 图  1  FeVO4、HKUST-1和FeVO4/HKUST-1的XRD图谱

    Figure  1.  XRD patterns of FeVO4, HKUST-1 and FeVO4/HKUST-1

    图  2  FeVO4(a)、HKUST-1(b)、FeVO4/HKUST-1((c),(d))的SEM图像

    Figure  2.  SEM images of FeVO4 (a), HKUST-1 (b) and FeVO4/HKUST-1 ((c), (d))

    图  3  FeVO4、HKUST-1和FeVO4/HKUST-1的吸附-脱附曲线

    Figure  3.  Adsorption-desorption isotherms of FeVO4, HKUST-1 and FeVO4/HKUST-1

    图  4  FeVO4、HKUST-1和FeVO4/HKUST-1的TAG曲线

    Figure  4.  TGA curves of FeVO4, HKUST-1 and FeVO4/HKUST-1

    图  5  FeVO4、HKUST-1、FeVO4/HKUST-1的紫外/可见漫反射光谱(a)及带隙图(b)

    Figure  5.  UV-Vis DRS (a) and band gap (b) of FeVO4, HKUST-1 and FeVO4/HKUST-1

    图  6  FeVO4、HKUST-1、FeVO4/HKUST-1的光电流(a)和交流阻抗谱(b)

    Figure  6.  Photocurrent (a) and EIS Nyquist plots (b) of FeVO4, HKUST-1 and FeVO4/HKUST-1

    图  7  不同比例的FeVO4/HKUST-1对RhB的降解动力学曲线(a)和准一级动力常数拟合(b)

    Figure  7.  Degradation (a) and pseudo-first-order kinetic curves (b) of RhB with different proportions of FeVO4/HKUST-1

    图  8  可见光下FeVO4/HKUST-1催化剂光催化降解不同污染物的效果

    Figure  8.  Reduction of different dyes by FeVO4/HKUST-1 under visible light irradiation

    图  9  不同pH下FeVO4/HKUST-1对RhB的降解动力学曲线

    Figure  9.  Degradation kinetics curves of RhB under different pH values

    图  10  FeVO4/HKUST-1降解染料循环稳定性

    Figure  10.  Stability of FeVO4/HKUST-1 for degradation of dye

    图  11  HKUST-1和FeVO4的Mott-Schottky曲线

    Figure  11.  Mott-Schottky plots of HKUST-1 and FeVO4

    图  12  不同光催化捕获剂的捕获效率(a) 和FeVO4/HKUST-1在可见光下照射的ESR图谱(b)

    Figure  12.  Removal efficiency with addition of different scavengers (a) and ESR signals of FeVO4/HKUST-1 under visible light (b)

    图  13  FeVO4/HKUST-1光催化降解RhB反应机制示意图

    Figure  13.  Proposed mechanism for photocatalytic reduction of RhB by FeVO4/HKUST-1

  • [1] NASAR A, MASHKOOR F. Application of polyaniline-based adsorbents for dye removal from water and wastewater—A review[J]. Environmental Science and Pollution Research,2019,26(6):5333-5356.
    [2] WANG Q, GAO Q, WU H, et al. In situ construction of semimetal Bi modified BiOI-Bi2O3 film with highly enhanced photoelectrocatalytic performance[J]. Separation and Purification Technology,2019,226:232-240.
    [3] TIAN J W, WU Y P, LI Y S, et al. Integration of semiconductor oxide and a microporous(3, 10)-connected Co6-based metal–organic framework for enhanced oxygen evolution reaction[J]. Inorganic Chemistry,2019,58(9):5837-5843.
    [4] WEI J H, YI J W, HAN M L, et al. A water-stable terbium(III)–organic framework as a chemosensor for inoranic ions, nitro-containing compounds and antibiotics in aqueous solutions[J]. Chemistry–An Asian Journal,2019,14(20):3694-3701.
    [5] HUANG D, WU X, TIAN J, et al. Assembling of a novel 3D Ag(I)-MOFs with mixed ligands tactics: Syntheses, crystal structure and catalytic degradation of nitrophenol[J]. Chinese Chemical Letters,2018,29(6):845-848.
    [6] WU Y P, ZHOU W, ZHAO J, et al. Surfactant-assisted phase-selective synthesis of new cobalt MOFs and their efficient electrocatalytic hydrogen evolution reaction[J]. Angewandte Chemie,2017,129(42):13181-13185.
    [7] WANG Q, GAO Q Y, Al-ENIZI A M, et al. Recent advances in MOF-based photocatalysis: Environmental remediation under visible light[J]. Inorganic Chemistry Frontiers,2020,7(2):300-339.
    [8] FU J, JIANG K, QIU X, et al. Product selectivity of photocatalytic CO2 reduction reactions[J]. Materials Today,2020,32:222-243.
    [9] XU Q, ZHU B, JIANG C, et al. Constructing 2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance[J]. Solar RRL, 2018, 2(3): 1800006.
    [10] RAN J, GUO W, WANG H, et al. Metal-free 2D/2D phosphorene/g-C3N4 Van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production[J]. Advanced Materials,2018,30(25):1800128.
    [11] HERMES S, SCHRODER F, CHELMOWSKI R, et al. Selective nucleation and growth of metal−organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111)[J]. Journal of the American Chemical Society,2005,127(40):13744-13745.
    [12] 魏金枝, 王雪亮, 孙晓君, 等. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 材料导报A: 综述篇, 2018, 32(5):1345-1441.

    WEI Jinzhi, WANG Xueliang, SUN Xiaojun, et al. Research status of green electrochemical synthesis of metal organic skeleton materials[J]. Material Guide A: Overview,2018,32(5):1345-1441(in Chinese).
    [13] SUN B, KAYAL S, CHAKRABORTY A. Study of HKUST-1(copper benzene-1, 3, 5-tricarboxylate Cu-BTC MOF)-1 metal organic frameworks for CH4 adsorption: An experimental investigation with GCMC (grand canonical Monte-carlo) simulation[J]. Energy,2014,76:419-427.
    [14] XU Q, ZHANG L, CHENG B, et al. S-scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1-17.
    [15] JIN M, QIAN X F, GAO J K, et al. Solvent-free synthesis of CuO/HKUST-1 composite and its photocatalytic application[J]. Inorganic Chemistry,2019,58(13):8332-8338.
    [16] SOFI F A, MAJID K, MEHRAJ O. The visible light driven copper based metal-organic-framework heterojunction: HKUST-1@Ag-Ag3PO4 for plasmon enhanced visible light photocatalysis[J]. Journal of Alloys and Compounds,2018,737:798-808.
    [17] OZTURK B, SOYLU G S P. Synthesis of surfactant-assisted FeVO4 nanostructure: Characterization and photocatalytic degration of phenol[J]. Journal of Molecular Catalysis A-Chemical,2015,398:65-71.
    [18] DU X D, WANG C C, LIU J G, et al. Extensive and selective adsorption of ZIF-67 towards organic dyes: Performance and mechanism[J]. Journal of Colloid and Interface Science,2017,506:437-441.
    [19] ZHOU G, DU Z, MA Y, et al. Molecular simulation study on gas adsorption and separation performance of alkyl-functionalized HKUST materials[J]. Computational Materials Science,2020,181:109755.
    [20] HU S J, YANG J, LIAO X H. Highly efficient degradation of methylene blue on microwave synthesized FeVO4 nanoparticles photocatalysts under visible-light irradiation[J]. In Applied Mechanics and Materials, 2013, 372: 153-157.
    [21] MOSLEH S, RAHIMI M R, GHAEDI M, et al. HKUST-1-MOF–BiVO4 hybrid as a new sonophotocatalyst for simultaneous degradation of disulfine blue and rose bengal dyes: Optimization and statistical modelling[J]. RSC Advances,2016,6(66):61516-61527.
    [22] SI Y, LIU G, DENG C, et al. Facile synthesis and electrochemical properties of amorphous FeVO4 as cathode materials for lithium secondary batteries[J]. Journal of Electroanalytical Chemistry,2017,787:19-23.
    [23] NIU X, ZHANG Y, TAN L, et al. Amorphous FeVO4 as a promising anode material for potassium-ion batteries[J]. Energy Storage Materials,2019,22:160-167.
    [24] LIN K Y A, HSIEH Y T. Copper-based metal organic framework (MOF), HKUST-1, as an efficient adsorbent to remove p-nitrophenol from water[J]. Journal of the Taiwan Institute of Chemical Engineers,2015,50:223-228.
    [25] KIM H K, YUN W S, KIM M B, et al. A Chemical route to activation of open metal sites in the copper-based metal–organic framework materials HKUST-1 and Cu-MOF-2[J]. Journal of the American Chemical Society,2015,137(31):10009-10015.
    [26] DUTTA D P, RAMAKRISHNAN M, ROY M, et al. Effect of transition metal doping on the photocatalytic properties of FeVO4 nanoparticles[J]. Journal of Photochemistry and Photobiology A: Chemistry,2017,335:102-111.
    [27] JIAO Z, GUAN X, WANG M, et al. Undamaged depositing large-area ZnO quantum dots/RGO films on photoelectrodes for the construction of pure Z-scheme[J]. Chemical Engineering Journal,2019,356:781-790.
    [28] LI J, ZHAO W, GUO Y, et al. Facile synthesis and high activity of novel BiVO4/FeVO4 heterojunction photocatalyst for degradation of metronidazole[J]. Applied Surface Science,2015,351:270-279.
  • 加载中
图(13)
计量
  • 文章访问数:  1104
  • HTML全文浏览量:  305
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-23
  • 录用日期:  2020-09-15
  • 网络出版日期:  2020-09-17
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回