留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土木工程应用中碳纤维/环氧树脂界面在环境影响下退化的分子模拟研究进展

吴超 吴瑞东 蒋金桥 谭力豪

吴超, 吴瑞东, 蒋金桥, 等. 土木工程应用中碳纤维/环氧树脂界面在环境影响下退化的分子模拟研究进展[J]. 复合材料学报, 2020, 37(12): 2941-2952. doi: 10.13801/j.cnki.fhclxb.20200831.003
引用本文: 吴超, 吴瑞东, 蒋金桥, 等. 土木工程应用中碳纤维/环氧树脂界面在环境影响下退化的分子模拟研究进展[J]. 复合材料学报, 2020, 37(12): 2941-2952. doi: 10.13801/j.cnki.fhclxb.20200831.003
WU Chao, WU Ruidong, JIANG Jinqiao, et al. Recent advances in understanding environmental effects on degradation of carbon fiber/epoxy matrix interface in civil engineering applications via molecular simulation[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 2941-2952. doi: 10.13801/j.cnki.fhclxb.20200831.003
Citation: WU Chao, WU Ruidong, JIANG Jinqiao, et al. Recent advances in understanding environmental effects on degradation of carbon fiber/epoxy matrix interface in civil engineering applications via molecular simulation[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 2941-2952. doi: 10.13801/j.cnki.fhclxb.20200831.003

土木工程应用中碳纤维/环氧树脂界面在环境影响下退化的分子模拟研究进展

doi: 10.13801/j.cnki.fhclxb.20200831.003
基金项目: 国家自然科学基金 (51808020;51978025;51911530208);中国博士后科学基金 (2017M620015;2018T110029);中组部第十二批“千人计划”青年项目
详细信息
    通讯作者:

    谭力豪,博士,助理教授,研究方向为复合材料、竹材/木材等土木工程材料的多尺度动力学模拟 Email:leo_tam@buaa.edu.cn

  • 中图分类号: TB332;TU599

Recent advances in understanding environmental effects on degradation of carbon fiber/epoxy matrix interface in civil engineering applications via molecular simulation

  • 摘要: 在土木工程领域,碳纤维增强复合材料 (CFRP) 由于有着优异的力学性能而被越来越多地用在建筑结构中。碳纤维与环氧树脂之间粘结界面的性能对于 CFRP 内部应力的有效传递极为关键,并很大程度上决定了复合材料的长期耐久性能。然而,纤维/树脂粘结界面易受到湿热、盐雾及海水等恶劣环境的侵蚀,导致界面脱粘及最终的复材破坏。为了确保复材的长期耐久性能,需要全面认识界面在环境侵蚀下的退化行为。分子动力学模拟可以“自底向上”地描述界面在环境侵蚀下的行为,有利于探究界面的退化和失效机制。本文综述了不同环境因素影响下碳纤维/环氧树脂界面退化的分子模拟研究进展,包括界面模型的建立,界面在潮湿、盐雾等环境中结构、性能的退化及其背后的机制。最后,提出了未来界面退化的研究方向,例如纤维/树脂粘结界面模型的进一步完善。

     

  • 图  1  碳纤维增强复合材料(CFRP) 的多尺度结构示意图

    Figure  1.  Hierarchical structure of carbon fiber reinforced polymer (CFRP) at different length scales ((a) Macroscale CFRP; (b) Microscale interface region exists between carbon fiber and epoxy matrix, where water can seep intothe local interface, leading to the interfacial debonding; (c) Molecular interface model in wet environment)

    图  2  不同环境中的碳纤维/环氧树脂粘结界面模型

    Figure  2.  Model development of carbon fiber/epoxy matrix interface in various environments ((a) Epoxy molecule is set on top of the substrate representing carbon fiber outer-layer to form the interface model; (b) Interface model is immersed in the water box to simulate the wet environment; (c) Salt ions are added in the water box to simulate the salt solution)

    图  3  碳纤维/环氧树脂粘结界面的结构与性能

    Figure  3.  Structure and properties of the carbon fiber/epoxy matrix interface

    图  4  环境因素影响下的界面退化机制示意图

    Figure  4.  Interface degradation in wet environment((a) No obvious hair-like bridge exists to bond the fiber and matrix in wet environment, which cannot impede the interfacial debonding process;(b) Local aggregated water molecules form H-bonds with epoxy functional groups at the interface)

    图  5  不同环境中树脂内部和树脂-溶液氢键数目对比

    Figure  5.  Comparison of number of H-bonds within epoxy and between epoxy and solution in different environments

    表  1  经验性力场的适用范围

    Table  1.   Applicability of empirical force fields

    Empirical force fieldMaterialProperty
    CVFFSmall organic crystals, gas phase structures, and organic, polymeric, and biological materialsStructures, binding energies, vibrational frequency, conformational energies, and mechanical properties
    DreidingBiological, organic, and some inorganic moleculesBulk material properties, including geometries, conformational energies, intermolecular binding energies, and crystal packing
    PCFFOrganic and inorganic materials, and polymersCohesive energies, mechanical properties, compressibilities, and heat capacities
    COMPASSOrganic and inorganic molecules, polymers, and metal materialsMolecular structure, conformation, vibration and thermodynamic properties of isolated and condensed molecules
    Notes: CVFF—Consistent valence force field; PCFF—Polymer consistent force field; COMPASS—Condensed-phase optimized molecular potentials for atomistic simulation studies.
    下载: 导出CSV

    表  2  不同环境影响下碳纤维/环氧树脂粘结界面结构与力学性能的退化:分子模拟研究结果[24-25]

    Table  2.   Structure and mechanical properties degradation of carbon fiber/epoxy matrix interface under various environmental effects: Molecular simulation results[24-25]

    EnvironmentPeak density of epoxy/(atom·nm−3)Glass transition temperature of epoxy/℃
    27℃50℃
    Dry21.221.5185.5
    Wet17.0 (−20%)16.8 (−22%)109.3 (−41%)
    Salt15.9 (−25%)15.8 (−27%)99.5 (−46%)
    下载: 导出CSV

    表  3  不同环境影响下碳纤维/环氧树脂粘结界面粘结性能的退化:分子模拟研究结果

    Table  3.   Adhesion degradation of carbon fiber/epoxy matrix interface under various environmental effects: Molecular simulation results

    EnvironmentSimulation techniqueSimulation resultReference
    WetWater molecules are added to the interface regionInterfacial shear stress decreases by 38% compared with the dry case[40]
    Interface is immersed in a large number of water moleculesInterfacial adhesion energy decreases by 58% and 69% respectively compared with the dry case[20-21]
    SaltInterface is immersed in a large number of water molecules and 5 wt% of Na+ and Cl ionsInterfacial adhesion energy decreases by 75% compared with
    the dry case
    [23]
    HygrothermalInterface is conditioned in 50℃ dry, wet, and salt environmentsInterfacial adhesion energy in 50℃ dry, wet, and salt environments decreases by 13%~14% compared with the 27℃ cases; interfacial adhesion energy in 50℃ wet and salt environments decreases by 73% and 78% respectively compared with the 27℃ dry case[24]
    下载: 导出CSV
  • [1] BEARDMORE P, JOHNSON C F. The potential for compo-sites in structural automotive applications[J]. Composites Science and Technology,1986,26(4):251-281.
    [2] GUERMAZI N, BEN TARJEM A, KSOURI I, et al. On the durability of FRP composites for aircraft structures in hygrothermal conditioning[J]. Composites Part B: Engineering,2016,85:294-304.
    [3] VAN DEN EINDE L, ZHAO L, SEIBLE F. Use of FRP compo-sites in civil structural applications[J]. Construction and Building Materials,2003,17(6):389-403.
    [4] BANK L, GENTRY T R, BARKATT A. Accelerated test methods to determine the long-term behavior of FRP composite structures: Environmental effects[J]. Journal of Reinforced Plastics and Composites,1995,14:559-587.
    [5] KARBHARI V M, CHIN J W, HUNSTON D, et al. Durability gap analysis for fiber-reinforced polymer composites in civil infrastructure[J]. Journal of Composites for Construction,2003,7(3):238-247.
    [6] HAMILTON H R, BENMOKRANE B, DOLAN C W, et al. Polymer materials to enhance performance of concrete in civil infrastructure[J]. Polymer Reviews,2009,49(1):1-24.
    [7] HOLLAWAY L. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties[J]. Construction and Building Materials,2010,24(12):2419-2445.
    [8] BÖER P, HOLLIDAY L, KANG T H K. Independent environmental effects on durability of fiber-reinforced polymer wraps in civil applications: A review[J]. Construction and Building Materials,2013,48:360-370.
    [9] LI M, LIU H, GU Y, et al. Effects of carbon fiber surface characteristics on interfacial bonding of epoxy resin composite subjected to hygrothermal treatments[J]. Applied Surface Science,2014,288:666-672.
    [10] TUAL N, CARRERE N, DAVIES P, et al. Characterization of sea water ageing effects on mechanical properties of carbon/epoxy composites for tidal turbine blades[J]. Composites Part A: Applied Science and Manufacturing,2015,78:380-389.
    [11] HONG B, XIAN G, WANG Z. Durability study of pultruded carbon fiber reinforced polymer plates subjected to water immersion[J]. Advances in Structural Engineering,2018,21(4):571-579.
    [12] WANG Z, XIAN G, ZHAO X L. Effects of hydrothermal aging on carbon fibre/epoxy composites with different interfacial bonding strength[J]. Construction and Building Materials,2018,161:634-648.
    [13] WANG Y, HAHN T H. AFM characterization of the interfacial properties of carbon fiber reinforced polymer compo-sites subjected to hygrothermal treatments[J]. Composites Science and Technology,2007,67(1):92-101.
    [14] GU Y, LI M, WANG J, et al. Characterization of the interphase in carbon fiber/polymer composites using a nanoscale dynamic mechanical imaging technique[J]. Carbon,2010,48(11):3229-3235.
    [15] NIU Y F, YANG Y, WANG X R. Investigation of the interphase structures and properties of carbon fiber reinforced polymer composites exposed to hydrothermal treatments using peak force quantitative nanomechanics technique[J]. Polymer Composites,2018,39(S2):E791-E796.
    [16] KAFODYA I, XIAN G, LI H. Durability study of pultruded CFRP plates immersed in water and seawater under sustained bending: Water uptake and effects on the mechanical properties[J]. Composites Part B: Engineering,2015,70:138-148.
    [17] MENG M, RIZVI M J, GROVE S M, et al. Effects of hygrothermal stress on the failure of CFRP composites[J]. Composite Structures,2015,133:1024-1035.
    [18] SHIN P S, KIM J H, PARK H S, et al. Evaluation of thermally-aged carbon fiber/epoxy composites using acoustic emission, electrical resistance and thermogram[J]. Composite Structures,2018,196:21-29.
    [19] ABANILLA M A, LI Y, KARBHARI V M. Durability characterization of wet layup graphite/epoxy composites used in external strengthening[J]. Composites Part B: Engineering,2005,37(2):200-212.
    [20] CYSNE BARBOSA A P, FULCO A P P, GUERRA E S S, et al. Accelerated aging effects on carbon fiber/epoxy compo-sites[J]. Composites Part B: Engineering,2017,110:298-306.
    [21] WU C, WU R, TAM L H. Atomistic investigation on interfacial deterioration of epoxy-bonded interface under hygrothermal environment[C]. 9th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE 2018), 2018.
    [22] XIAO Y, XIAN G. Effects of moisture ingress on the bond between carbon fiber and epoxy resin investigated with molecular dynamics simulation[J]. Polymer Composites,2018,39:E2074-E2083.
    [23] TAM L H, HE L, WU C. Molecular dynamics study on the effect of salt environment on interfacial structure, stress, and adhesion of carbon fiber/epoxy interface[J]. Composite Interfaces,2019,26(5):431-447.
    [24] TAM L H, ZHOU A, WU C. Nanomechanical behavior of carbon fiber/epoxy interface in hygrothermal conditioning: A molecular dynamics study[J]. Materials Today Communications,2019,19:495-505.
    [25] TAM L H, ZHOU A, ZHANG R, et al. Effect of hygrothermal environment on traction-separation behavior of carbon fiber/epoxy interface[J]. Construction and Building Materials,2019,220:728-738.
    [26] WU C, JIANG J, TAM L H. An atomistic study of creep behavior in fiber/matrix interface[C]. ICCM222019, Melbourne: Engineers, 2019: 2526-2535.
    [27] 胡松青, 吕强, 王志坤, 等. 碳纳米管/聚合物复合材料界面结合性能的研究进展[J]. 复合材料学报, 2017, 34(1):12-22.

    HU S Q, LV Q, WANG Z K, et al. Advances in the interfacial bonding characteristics of carbon nanotube/polymer composites[J]. Acta Materiae Compositae Sinica,2017,34(1):12-22(in Chinese).
    [28] 张文卿, 李肇晨, 吴天宇, 等. 环氧树脂及其复合材料交联结构和宏观性能的分子模拟研究与进展[J]. 复合材料学报, 2019, 36(2):269-276.

    ZHANG W Q, LI Z C, WU T Y, et al. Molecular simulation research and development of cross-linked structure and macroscopic properties of epoxy resin and its composites[J]. Acta Materiae Compositae Sinica,2019,36(2):269-276(in Chinese).
    [29] ALLINGTON R D, ATTWOOD D, HAMERTON I, et al. Developing improved models of oxidatively treated carbon fibre surfaces, using molecular simulation[J]. Composites Part A: Applied Science and Manufacturing,2004,35(10):1160-1173.
    [30] HADDEN C, JENSEN B D, BANDYOPADHYAY A, et al. Molecular modeling of EPON-862/graphite composites: Interfacial characteristics for multiple crosslink densities[J]. Composites Science and Technology,2013,76:92-99.
    [31] LI C, BROWNING A R, CHRISTENSEN S, et al. Atomistic simulations on multilayer graphene reinforced epoxy composites[J]. Composites Part A: Applied Science and Manufacturing,2012,43(8):1293-1300.
    [32] LIU F, WANG H, XUE L, et al. Effect of microstructure on the mechanical properties of PAN-based carbon fibers during high-temperature graphitization[J]. Journal of Materials Science,2008,43(12):4316-4322.
    [33] VARSHNEY V, ROY A, BAUR J. Modeling the role of bulk and surface characteristics of carbon fiber on thermal conductance across the carbon fiber/matrix interface[J]. ACS Applied Materials & Interfaces,2015,7(48):26674-26683.
    [34] TAM L-h, LAU D. A molecular dynamics investigation on the cross-linking and physical properties of epoxy-based materials[J]. RSC Advances,2014,4(62):33074.
    [35] SUN H, MUMBY S J, MAPLE J R, et al. An ab initio CFF93 all-atom force field for polycarbonates[J]. Journal of the American Chemical Society,1994,116(7):2978-2987.
    [36] WANG X, IMRAN S A, CHEN G, et al. Molecular dynamics simulations of interfacial adhesion between carbon fibers and various epoxies/hardeners and its calorimetric validation[J]. Journal of Composite Materials,2013,47(8):1011-1017.
    [37] BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Interaction models for water in relation to protein hydration[M]. Berlin: Springer, 1981: 331-342.
    [38] JOUNG I S, CHEATHAM T E. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations[J]. The Journal of Physical Chemistry B,2008,112(30):9020-9041.
    [39] VAN DUIN A C T, DASGUPTA S, LORANT F, et al. ReaxFF: A reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A,2001,105(41):9396-9409.
    [40] CHAHAL R, RAIHAN M R, REIFSNIDER K, et al. Molecular dynamics for the prediction of theinterfacial shear stress and interface dielectric properties of carbon fiber epoxy composites[C]. Proceedings of the American Society for Composites—Thirty-third Technical conference, 2018.
    [41] 陈生辉, 孙霜青, 李春玲, 等. 碳纳米纤维与环氧树脂单体相互作用的分子动力学模拟[J]. 高分子学报, 2015, 10:1158-1164. doi: 10.11777/j.issn1000-3304.2015.15053

    CHEN S H, SUN S Q, LI C L, et al. Molecular dynamics simulations of the interaction between carbon nanofiber and epoxy resin monomers[J]. Acta Polymerica Sinica,2015,10:1158-1164(in Chinese). doi: 10.11777/j.issn1000-3304.2015.15053
    [42] STOFFELS M T, STAIGER M P, BISHOP C M. Reduced interfacial adhesion in glass fibre-epoxy composites due to water absorption via molecular dynamics simulations[J]. Composites Part A: Applied Science & Manufacturing,2019,118:99-105.
    [43] XIN D, HAN Q. Study on thermomechanical properties of cross-linked epoxy resin[J]. Molecular Simulation,2014,41:1-5.
    [44] SHARP N, LI C, STRACHAN, et al. Effects of water on epoxy cure kinetics and glass transition temperature utilizing molecular dynamics simulations[J]. Journal of Polymer Science Part B: Polymer Physics,2017,55(15):1150-1159.
    [45] BUYKOZTURK O, BUEHLER M J, LAU D, et al. Structural solution using molecular dynamics: Fundamentals and a case study of epoxy-silica interface[J]. International Journal of Solids and Structures,2011,48(14):2131-2140.
    [46] HADDEN C M, KLIMEKMCDONALD D R, PINEDA E J, et al. Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: Multiscale modeling and experiments[J]. Carbon,2015,95:100-112.
    [47] EQRA R, JANGHORBAN K, MANESH H D. Effect of number of graphene layers on mechanical and dielectric properties of graphene-epoxy nanocomposites[J]. Plastics Rubber & Composites,2015,44(10):405-412.
    [48] HIGUCHI C, TANAKA H, YOSHIZAWA K. Molecular understanding of the adhesive interactions between silica surface and epoxy resin: Effects of interfacial water[J]. Journal of Computational Chemistry,2018,40:164-171.
    [49] ZHANG M, JIANG B, CHEN C, et al. The effect of temperature and strain rate on the interfacial behavior of glass fiber reinforced polypropylene composites: A molecular dynamics study[J]. Polymers,2019,11(11):1766.
    [50] LEE M C, PEPPAS N A. Water transport in graphite/epoxy composites[J]. Journal of Applied Polymer Science,1993,47(8):1349-1359.
    [51] GU Y, LIU H, LI M, et al. Macro-and micro-interfacial properties of carbon fiber reinforced epoxy resin composite under hygrothermal treatments[J]. Journal of Reinforced Plastics & Composites,2014,33(4):369-379.
    [52] LIU H, GU Y, LI M, et al. Characterization of interfacial toughness in carbon fiber/epoxy resin composite subjected to water aging using single-fiber fragmentation method in an energy-based model[J]. Polymer Composites,2012,33(5):716-722.
    [53] DEMIR B, BEGGS K M, FOX B L, et al. A predictive model of interfacial interactions between functionalised carbon fibre surfaces cross-linked with epoxy resin[J]. Compo-sites Science & Technology,2018,159:127-134.
    [54] CHU J M, CLAUS B, PARAB N, et al. Visualization of dynamic fiber-matrix interfacial shear debonding[J]. Journal of Materials Science,2018,53:5845-5859.
    [55] GOERTZEN W K, KESSLER M R. Creep behavior of carbon fiber/epoxy matrix composites[J]. Materials Science & Engineering A,2006,421(1-2):217-225.
    [56] LAU D, BRODERICK K, BUEHLER M J, et al. A robust nanoscale experimental quantification of fracture energy in a bilayer material system[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(33):11990-11995.
    [57] JIAO W, LIU W, YANG F, et al. Improving the interfacial strength of carbon fiber/vinyl ester resin composite by self-migration of acrylamide: A molecular dynamics simulation[J]. Applied Surface Science,2018,454:74-81.
    [58] EYCKENS D, SERVINIS L, HENDERSEN L, et al. Synergistic interfacial effects of ionic liquids as sizing agents and surface modified carbon fibers[J]. Journal of Materials Chemistry A,2018,6:4504-4514.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  1216
  • HTML全文浏览量:  510
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-18
  • 录用日期:  2020-08-20
  • 网络出版日期:  2020-09-01
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回